14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{5x-2,x<2}\\{{x}^{2}+2ax,x≥2}\end{array}\right.$,若f(f(1))=3a,則實數(shù)a=-3.

分析 根據(jù)自變量的值代入分段函數(shù),從而得到方程求解即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{5x-2,x<2}\\{{x}^{2}+2ax,x≥2}\end{array}\right.$,
∴f(1)=5-2=3,
f(f(1))=f(3)=9+6a=3a,
解得,a=-3,
故答案為:-3.

點評 本題考查了分段函數(shù)的簡單應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)是定義在R上的函數(shù),若對于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)求f(0)的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷函數(shù)f(x)在R上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過點P(1,-2)且垂直于直線x-3y+2=0的直線方程為3x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知焦點均在x軸上的雙曲線C1,與雙曲線C2的漸近線方程分別為y=土k1x 與y=±k2x,記雙曲線C1的離心率e1,雙曲線C2的離心率e2,若k1k2=1,則e1e2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解寶雞市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如表:
評估的平均得分(0,6)[6,8)[8,10]
全市的總體交通狀況等級不合格合格優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級;
(2)用簡單隨機抽樣方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x|x-2|.
(1)作出函數(shù)f(x)=x|x-2|的大致圖象;
(2)若方程f(x)-k=0有三個解,求實數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知從集合M到N的映射f滿足f(a)-f(b)-f(c)=0,且集合M={a,b,c},N={-1,0,1},那么映射f的個數(shù)為( 。
A.7B.5C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)的值滿足f(x)<0,對任意實數(shù)x,y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,當0<x<1時,f(x)∈(0,1).
(1)求f(1)的值,判斷f(x)的奇偶性并證明;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給出證明;
(3)若a≥0且f(a+1)≤$\root{3}{9}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a,b∈R,且$\frac{a}{1-i}+\frac{2-i}=\frac{1}{3-i}$,則數(shù)列{an+b}前100項的和為-910.

查看答案和解析>>

同步練習(xí)冊答案