5.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{2}{x^2}$+x+d在R上單調(diào),則b的取值范圍為[-2,2].(用區(qū)間表示)

分析 函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{2}{x^2}$+x+d在R上單調(diào),f′(x)≥0恒成立,利用判別式,即可得出結(jié)論.

解答 解:∵f(x)=$\frac{1}{3}{x^3}$-$\frac{2}{x^2}$+x+d,
∴f′(x)=x2-bx+1
∵函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{2}{x^2}$+x+d在R上單調(diào),
∴f′(x)≥0恒成立,
∴b2-4≤0,
∴-2≤b≤2.
故答案為:[-2,2].

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,將函數(shù)在R上單調(diào)遞增轉(zhuǎn)化為f′(x)≥0恒成立是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某小區(qū)內(nèi)有一塊荒地ABCDE,今欲在該荒地上劃出一塊長方形地面(不改變方位)進(jìn)行開發(fā)(如圖所示),問如何設(shè)計(jì)才能使開發(fā)的面積最大?最大開發(fā)面積是多少?(已知BC=210m,CD=240m,DE=300m,EA=180m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在同一坐標(biāo)系中,直線l是函數(shù)f(x)=$\sqrt{1-{x}^{2}}$在(0,1)處的切線,若直線l也是g(x)=-x2+mx的切線,則m=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=f′($\frac{π}{4}$)sinx+cosx,則 f($\frac{π}{2}$)=-$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A,B是圓C:x2+y2=1上兩點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}$=-1,點(diǎn)P是直線x-y-2=0上一點(diǎn),則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過點(diǎn)(1,-1)且與曲線y=x3-2x相切的切線方程為( 。
A.x-y-2=0或5x+4y-1=0B.x-y-2=0
C.x-y+2=0D.x-y-2=0或4x+5y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.與曲線y=x2相切,且與直線x+2y+1=0,垂直的直線的方程為( 。
A.y=2x-2B.y=2x+2C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在Rt△ABC中,BC=2,∠C=90°,點(diǎn)D滿足$\overrightarrow{AD}=2\overrightarrow{DB}$,則$\overrightarrow{CB}•\overrightarrow{CD}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在(0,$\frac{π}{2}$)內(nèi)單調(diào)遞增,且以π為最小正周期的偶函數(shù)是( 。
A.y=tan|x|B.y=|tanx|C.y=cot|x|D.y=|cotx|

查看答案和解析>>

同步練習(xí)冊(cè)答案