已知函數(shù)數(shù)學(xué)公式,
(1)若x>0,求f(x)的最小值及此時(shí)的x值.
(2)若數(shù)學(xué)公式,求f(x)的最小值及此時(shí)的x值.

解:(1)因?yàn)閤>0,所以由基本不等式得≥2
當(dāng)且僅當(dāng),即,x=時(shí)取等號(hào),
所以當(dāng)x=時(shí),函數(shù)f(x)有最小值12.
(2)設(shè),則,
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/423429.png' />,所以x1-x20.
所以f(x1)>f(x2),即函數(shù)在上為減函數(shù).
所以當(dāng)x=時(shí),函數(shù)的最小值為
分析:(1)可以利用定義去判斷函數(shù)的單調(diào)性,或者使用基本不等式求函數(shù)的最小值,(2)利用定義判斷函數(shù)在上的單調(diào)性,然后求出最小值.
點(diǎn)評(píng):本題考查了利用定義證明和判斷函數(shù)的單調(diào)性以及利用單調(diào)性求函數(shù)最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

()已知函數(shù).(1)若x∈R,求fx)的單調(diào)遞增區(qū)間;          (2)若x∈[0,]時(shí),fx)的最大值為4,求a的值,并指出這時(shí)x的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市南開(kāi)中學(xué)高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若x∈R,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)在答題卡所示的坐標(biāo)系中畫出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市昌平區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若x=1為f(x)的極值點(diǎn),求a的值;
(2)若y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為x+y-3=0,
(i)求f(x)在區(qū)間[-2,4]上的最大值;
(ii)求函數(shù)G(x)=[f'(x)+(m+2)x+m]e-x(m∈R)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年廣東省深圳市五校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若x∈R,求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)設(shè),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二下學(xué)期第一學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),

(1)若x=1時(shí)取得極值,求實(shí)數(shù)的值;

(2)當(dāng)時(shí),求上的最小值;

(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案