分析 (1)充分利用已知4Sn=(2n-1)an+1+1,將式子中n換成n-1,然后相減得到an與an+1的關(guān)系,利用累乘法得到數(shù)列的通項(xiàng),
(2)①利用裂項(xiàng)求和,即可求出Tn,
②根據(jù)函數(shù)的思想求出$\frac{n}{2n+1}$≥$\frac{1}{3}$,問題轉(zhuǎn)化為kx2-6kx+k+8>0恒成立,分類討論即可.
解答 解:(1)∵4Sn=(2n-1)an+1+1,
∴4Sn-1=(2n-3)an+1,n≥2
∴4an=(2n-1)an+1-(2n-3)an,
整理得(2n+1)an=(2n-1)an+1,
即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n+1}{2n-1}$,
∴$\frac{{a}_{2}}{{a}_{1}}$=3,$\frac{{a}_{3}}{{a}_{2}}$=$\frac{5}{3}$,…,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2n-1}{2n-3}$
以上各式相乘得$\frac{{a}_{n}}{{a}_{1}}$=2n-1,又a1=1,
所以an=2n-1,
(2)①∵cn=$\frac{1}{{a}_{n}({a}_{n}+2)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
②由①可知Tn=$\frac{n}{2n+1}$,
∴$\frac{n}{2n+1}$≥$\frac{1}{3}$,
∵kx2-6kx+k+7+3Tn>0恒成立,
∴kx2-6kx+k+8>0恒成立,
當(dāng)k=0時(shí),8>0恒成立,
當(dāng)k≠0時(shí),則得$\left\{\begin{array}{l}{k>0}\\{△=36{k}^{2}-4k(k+8)<0}\end{array}\right.$,解得0<k<1,
綜上所述實(shí)數(shù)k的取值范圍為[0,1).
點(diǎn)評(píng) 本題考查了利用累乘法求數(shù)列的通項(xiàng)公式,裂項(xiàng)求和,數(shù)列的函數(shù)特征,以及不等式恒成立,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | -$\frac{1}{3}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 與b有關(guān),且與c有關(guān) | B. | 與b有關(guān),但與c無關(guān) | ||
C. | 與b無關(guān),且與c無關(guān) | D. | 與b無關(guān),但與c有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{8}$] | B. | (0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1) | C. | (0,$\frac{5}{8}$] | D. | (0,$\frac{1}{8}$]∪[$\frac{1}{4}$,$\frac{5}{8}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com