【題目】

已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù), ).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若僅有一個(gè)極值點(diǎn),求的取值范圍.

【答案】(1)的減區(qū)間為, ,增區(qū)間為;(2)

【解析】試題分析:(1)當(dāng)時(shí),求出,列表,即可求出的單調(diào)區(qū)間;(2)求出,再對(duì)其零點(diǎn)進(jìn)行討論,得到一個(gè)關(guān)于的方程,再對(duì)這個(gè)方程根的個(gè)數(shù)進(jìn)行討論,即可得到的取值范圍.

試題解析:(1)由題知,

得到,

而當(dāng)時(shí), 時(shí), ,列表得:

-1

-

0

+

0

-

極大值

極小值

所以,此時(shí)的減區(qū)間為 ,增區(qū)間為;

(2),

得到 (*)

由于僅有一個(gè)極值點(diǎn),

關(guān)于的方程(*)必?zé)o解,

①當(dāng)時(shí),(*)無(wú)解,符合題意,

②當(dāng)時(shí),由(*)得,故由,

由于這兩種情況都有,當(dāng)時(shí), ,于是為減函數(shù),當(dāng)時(shí), ,于是為增函數(shù),∴僅的極值點(diǎn),綜上可得的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱 中,側(cè)面和側(cè)面都是矩形, 是邊長(zhǎng)為的正三角形, 分別為的中點(diǎn).

(1)求證: 平面

(2)求證:平面平面.

(3)若平面,求棱的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, 的延長(zhǎng)線上, 為銳角). 圓都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(3,0),B(0,3)C(cosα,sinα),O為原點(diǎn).
(1)若 , 求tanα的值;
(2)若 , 求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實(shí)驗(yàn)階段.已知實(shí)驗(yàn)的啟動(dòng)資金為10萬(wàn)元,從實(shí)驗(yàn)的第一天起連續(xù)實(shí)驗(yàn),第天的實(shí)驗(yàn)需投入實(shí)驗(yàn)費(fèi)用為,實(shí)驗(yàn)30天共投入實(shí)驗(yàn)費(fèi)用17700元.

(1)求的值及平均每天耗資最少時(shí)實(shí)驗(yàn)的天數(shù);

(2)現(xiàn)有某知名企業(yè)對(duì)該項(xiàng)實(shí)驗(yàn)進(jìn)行贊助,實(shí)驗(yàn)天共贊助.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實(shí)驗(yàn),若要求在平均每天實(shí)際耗資最小時(shí)結(jié)束實(shí)驗(yàn),求的取值范圍.(實(shí)際耗資=啟動(dòng)資金+試驗(yàn)費(fèi)用-贊助費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)函數(shù):①y=3-x;②y=;③y=x2+2x-10;④y=-.其中值域?yàn)镽的函數(shù)個(gè)數(shù)有(  )

A. 1個(gè) B. 2個(gè)

C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求證:平面ABC1⊥平面A1ACC1;
(2)設(shè)D是線段BB1的中點(diǎn),求三棱錐D﹣ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)若點(diǎn) 在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,P為對(duì)角線BD1的三等分點(diǎn),P到各頂點(diǎn)的距離的不同取值有(  )

A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案