三次函數(shù)當(dāng)是有極大值4,當(dāng)是有極小值0,且函數(shù)過原點,則此函數(shù)是(     )
A.B.
C.D.
B

試題分析:因為,三次函數(shù)當(dāng)是有極大值4,當(dāng)是有極小值0,且函數(shù)過原點,所以,當(dāng),時,導(dǎo)函數(shù)值為0,所以,選B。
點評:簡單題,解答思路比較明確,遵循“求導(dǎo)數(shù)、求駐點、研究單調(diào)性、確定極值”,也可以利用“表解法”。本題通過驗證即可。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線在點處的切線平行于軸,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) , .  
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,函數(shù)上的最大值為,若存在,使得成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:①若存在導(dǎo)函數(shù),則;②若函數(shù),則;③若函數(shù),則;④若三次函數(shù),則“”是“f(x)有極值點”的充要條件;⑤函數(shù)的單調(diào)遞增區(qū)間是.其中真命題為____.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為實數(shù).
(Ⅰ) 若處取得的極值為,求的值;
(Ⅱ)若在區(qū)間上為減函數(shù),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的圖象經(jīng)過點,且在處的切線方程是
(1)求的解析式;(2)求的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象在點處的切線方程是,則
               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案