某出版社新出版一本高考復(fù)習(xí)用書(shū),該書(shū)的成本為5元/本,經(jīng)銷(xiāo)過(guò)程中每本書(shū)需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書(shū)投放市場(chǎng)后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷(xiāo)售量為萬(wàn)本.
(1)求該出版社一年的利潤(rùn)(萬(wàn)元)與每本書(shū)的定價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每本書(shū)的定價(jià)為多少元時(shí),該出版社一年的利潤(rùn)最大,并求出的最大值.

(1);(2)若,則當(dāng)每本書(shū)定價(jià)為元時(shí),出版社一年的利潤(rùn)最大,最大值(萬(wàn)元);若,則當(dāng)每本書(shū)定價(jià)為11元時(shí),出版社一年的利潤(rùn)最大,最大值(萬(wàn)元).

解析試題分析:本題是實(shí)際問(wèn)題的考查,考查函數(shù)的最值,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性最值.第一問(wèn),利用每本書(shū)的銷(xiāo)售利潤(rùn)銷(xiāo)售量列出表示式,在這一問(wèn)中,要注意注明函數(shù)的定義域;第二問(wèn),利用導(dǎo)數(shù)求函數(shù)最值,先求導(dǎo)數(shù),令導(dǎo)數(shù)為0,解出方程的根,由于這是實(shí)際問(wèn)題,應(yīng)考慮根必須在定義域內(nèi),討論根是否在內(nèi),分2種情況,分別判斷單調(diào)性求出最值,最后綜合上述2種情況得出結(jié)論.
試題解析:(1)該出版社一年的利潤(rùn)(萬(wàn)元)與每本書(shū)定價(jià)的函數(shù)關(guān)系式為:
.     5分(定義域不寫(xiě)扣1分)
(2).       6分
或x=20(不合題意,舍去).    7分
, .在兩側(cè)的值由正變負(fù).
①當(dāng)時(shí),
即是增函數(shù),在是減函數(shù).

②當(dāng)時(shí)上是增函數(shù),

所以
答:若,則當(dāng)每本書(shū)定價(jià)為元時(shí),出版社一年的利潤(rùn)最大,最大值(萬(wàn)元);若,則當(dāng)每本書(shū)定價(jià)為11元時(shí),出版社一年的利潤(rùn)最大,最大值(萬(wàn)元)          12分
考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù), 上為增函數(shù),且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,.
(Ⅰ)求證:;
(Ⅱ)設(shè)直線、均相切,切點(diǎn)分別為()、(),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng),時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),方程有唯一實(shí)數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知函數(shù) .
(I)若是,的極值點(diǎn),討論的單調(diào)性;
(II)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在點(diǎn)處的切線與圓相切,求的值;
(2)當(dāng)時(shí),函數(shù)的圖像恒在坐標(biāo)軸軸的上方,試求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證:當(dāng)時(shí),有;
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)討論函數(shù)的單調(diào)性;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),曲線過(guò)點(diǎn)P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求,的值;
(2)證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案