【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為,求的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
【答案】(1)列聯(lián)表見解析,有的把握認(rèn)為喜歡游泳與性別有關(guān);(2)分布列見解析,.
【解析】
試題分析:(1)根據(jù)題意完成列聯(lián)表,根據(jù)給出的公式求出相關(guān)系數(shù)的值,對比臨界值表,若,則有的把握認(rèn)為喜歡游泳與性別有關(guān),否則無關(guān);(2)的所有可能取值為,根據(jù)取各值的數(shù)學(xué)意義求出其概率,得到分布列和數(shù)學(xué)期望.
試題解析:(1)因為在100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為,
所以喜歡游泳的學(xué)生人數(shù)為人...................1分
其中女生有20人,則男生有40人,列聯(lián)表補(bǔ)充如下:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 40 | 10 | 50 |
女生 | 20 | 30 | 50 |
合計 | 60 | 40 | 100 |
................................................3分
因為................... 5分
所以有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)......................6分
(2)喜歡游泳的共60人,按分層抽樣抽取6人,則每個個體被抽到的概率均為,
從而需抽取男生4人,女生2人.
故的所有可能取值為0,1,2......................... 7分
,
的分布列為:
0 | 1 | 2 | |
................................ 10分
.................12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), , 為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)存在兩個零點,求的取值范圍;
(Ⅱ)若對任意, , 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為其定義域內(nèi)的奇函數(shù).
(1)求實數(shù)的值;
(2)求不等式的解集;
(3)證明: 為無理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是正方形,側(cè)面底面,且,分別為的中點.
(1)求證:平面;
(2)在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若分別是橢圓的左、右焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單位正方體 中,O是 的中點,如圖建立空間直角坐標(biāo)系.
(1)求證 ∥平面 ;
(2)求異面直線與OD夾角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;
(2)設(shè),求證 :b1+b2+…+bn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P—ABC中,PC底面ABC,AB=BC,D、F分別為AC、PC的中點,DEAP于E。(1)求證:AP平面BDE;(2)求證:平面BDE平面BDF;(3)若AE:EP=1:2,求截面BEF分三棱錐P—ABC所成上、下兩部分的體積比。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com