P是長軸在x軸上的橢圓
x2
a2
+
y2
b2
=1上的點F1,F(xiàn)2分別為橢圓的兩個焦點,橢圓的半焦距為c,則|PF1|•|PF2|的最大值與最小值之差一定是( 。
A、1
B、a2
C、b2
D、c2
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意,設|PF1|=x,故有|PF1|•|PF2|=x(2a-x)=-x2+2ax=-(x-a)2+a2,其中a-c≤x≤a+c,可求y=-x2+6x的最小值與最大值,從而可求|PF1|•|PF2|的最大值和最小值之差.
解答: 解:由題意,設|PF1|=x,
∵|PF1|+|PF2|=2a,
∴|PF2|=2a-x
∴|PF1|•|PF2|=x(2a-x)=-x2+2ax=-(x-a)2+a2,
∵a-c≤x≤a+c,
∴x=a-c時,y=-x2+2ax取最小值b2,
x=a時,y=-x2+2ax取最大值為a2
∴|PF1|•|PF2|的最大值和最小值之差為a2-b2=c2
故選:D.
點評:本題以橢圓的標準方程為載體,考查橢圓定義的運用,考查函數(shù)的構(gòu)建,考查函數(shù)的單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=1-e-x,函數(shù)g(x)=
x
ax+1
(其中a∈R,e是自然對數(shù)的底數(shù)).
(1)當a=0時,求函數(shù)h(x)=f′(x)•g(x)的極值;
(2)若f(x)≤g(x)在[0,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:(
b
a
-p=(
a
b
p(ab≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x+2)=x2-4x+4,求f(5)及f(x);
(2)寫出f(x)=x2-2x的單調(diào)遞增區(qū)間,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3-2|x|,g(x)=x2-2x,構(gòu)造函數(shù)F(x),定義如下:當f(x)≥g(x)時,F(xiàn)(x)=g(x);當f(x)<g(x)時,F(xiàn)(x)=f(x).那么F(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,若a=18,∠A=45°,解三角形時有兩解,則邊b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足不等式組
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目標函數(shù)z=y-ax取得最大值時的唯一最優(yōu)解是(1,3),則實數(shù)a的取值范圍為(  )
A、(-∞,-1)
B、(0,1)
C、[1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過圓x2+y2=1上點(
1
2
,
3
2
)的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
、
b
都是非零向量,
a
b
<0是
a
b
夾角為鈍角的
 
條件.

查看答案和解析>>

同步練習冊答案