精英家教網 > 高中數學 > 題目詳情
求過點A(2,1)和兩直線x-2y-3=0與2x-3y-2=0的交點的直線方程是( 。
A、2x+y-5=0B、5x-7y-3=0C、x-3y+5=0D、7x-2y-4=0
分析:聯立兩直線方程求得交點坐標,然后直接代入直線方程的兩點式得答案.
解答:解:聯立
x-2y-3=0
2x-3y-2=0
,
x=-5
y=-4

∴兩直線x-2y-3=0與2x-3y-2=0的交點坐標為(-5,-4),
∴過點A(2,1)和點(-5,-4)的直線方程為:
y-1
-4-1
=
x-2
-5-2

整理得:5x-7y-3=0.
故選:B.
點評:本題考查了二元一次方程組的解法,考查了直線方程的兩點式,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=log3(ax+b)圖象過點A(2,1)和B(5,2),設an=3f(n),n∈N*
(Ⅰ)求函數f(x)的解析式及數列{an}的通項公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對一切n∈N*均成立的最大實數a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設Tn是數列{bn}的前n項和,試問是否存在正整數m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

求過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓方程.

查看答案和解析>>

科目:高中數學 來源:2006-2007學年廣東省陽江市高三(上)期末數學試卷(理科)(解析版) 題型:解答題

已知函數f(x)=log3(ax+b)圖象過點A(2,1)和B(5,2),設an=3f(n),n∈N*
(Ⅰ)求函數f(x)的解析式及數列{an}的通項公式;
(Ⅱ)求使不等式對一切n∈N*均成立的最大實數a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設Tn是數列{bn}的前n項和,試問是否存在正整數m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓方程.

查看答案和解析>>

同步練習冊答案