【題目】已經(jīng)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ) ①當(dāng)時(shí),的遞減區(qū)間是,無(wú)遞增區(qū)間;②當(dāng)時(shí),的遞增區(qū)間是,遞減區(qū)間是

(Ⅱ .

【解析】

分析:Ⅰ)求出導(dǎo)函數(shù),由于定義域是,可按分類(lèi)討論的正負(fù),得單調(diào)區(qū)間.

Ⅱ)由函數(shù)在處取極值得且可得的具體數(shù)值,而不等式可轉(zhuǎn)化為,這樣只要求得的最小值即可.

詳解:(Ⅰ)在區(qū)間上,.

①若,則,是區(qū)間上的減函數(shù);

②若,令.

在區(qū)間上,,函數(shù)是減函數(shù);

在區(qū)間 上,,函數(shù)是增函數(shù);

綜上所述,①當(dāng)時(shí),的遞減區(qū)間是,無(wú)遞增區(qū)間;

②當(dāng)時(shí),的遞增區(qū)間是,遞減區(qū)間是

(II)因?yàn)楹瘮?shù)處取得極值,所以

解得,經(jīng)檢驗(yàn)滿(mǎn)足題意.

由已知,則

,則

易得上遞減,在上遞增,

所以,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 ,再將所得曲線向左平移1個(gè)單位,得到曲線C1 , 求曲線C1上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國(guó)擁有世界上最大的快遞市場(chǎng).某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(guò)(不足,按計(jì)算)需再收5.

該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來(lái)5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;

(2)①估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),其余的用作其他費(fèi)用.目前前臺(tái)有工作人員3人,每人每天攬件不超過(guò)150件,日工資100元.公司正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張卡片分別寫(xiě)有數(shù)字,從中任取張,可排出不同的四位數(shù)個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1已知fx+1=x2+4x+1,求fx的解析式.

2已知fx是一次函數(shù),且滿(mǎn)足3fx+1-fx=2x+9.求fx

3已知fx滿(mǎn)足2fx+f =3x,求fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年10月9日,教育部考試中心下發(fā)了《關(guān)于年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會(huì)主義核心價(jià)值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.鞍山市教育部門(mén)積極回應(yīng),編輯傳統(tǒng)文化教材,在全是范圍內(nèi)開(kāi)設(shè)書(shū)法課,經(jīng)典誦讀等課程.為了了解市民對(duì)開(kāi)設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了位市民進(jìn)行了解,發(fā)現(xiàn)支持開(kāi)展的占,在抽取的男性市民人中支持態(tài)度的為人.

支持

不支持

合計(jì)

男性

女性

合計(jì)

(1)完成列聯(lián)表

(2)判斷是否有的把握認(rèn)為性別與支持有關(guān)?

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線l過(guò)點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿(mǎn)足f(﹣x)=f(x),且當(dāng)x<0,f(x)=3x+1,若a= ,b= ,c=2 ,則有(
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(b)<f(a)<f(c)
D.f(c)<f(a)<f(b)

查看答案和解析>>

同步練習(xí)冊(cè)答案