計算:lg-lg+lg7= .
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
設(shè)極點與坐標(biāo)原點重合極軸與x軸正半軸重合,已知直線l的極坐標(biāo)方程為:ρsin=a,a∈R,圓C的參數(shù)方程是 (θ為參數(shù)).若圓C關(guān)于直線l對稱,則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=(x≠-)滿足f(f(x))=x,則常數(shù)c等于( )
(A)3 (B)-3
(C)3或-3 (D)5或-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
若偶函數(shù)f(x)在(-∞,0)上單調(diào)遞減,則不等式f(-1)<f(lgx)的解集是( )
(A)(0,10) (B)(,10)
(C)(,+∞) (D)(0,)∪(10,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=loga(3-ax).
(1)當(dāng)x∈[0,2]時,函數(shù)f(x)恒有意義,求實數(shù)a的取值范圍.
(2)是否存在這樣的實數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1?如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=則f(f())=( )
(A) (B)- (C)9 (D)-9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:解答題
已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調(diào)遞增.
(2)若a>0且f(x)在(1,+∞)上單調(diào)遞減,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(二)第一章第二節(jié)練習(xí)卷(解析版) 題型:填空題
sinα≠sinβ是α≠β的 條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(三)第一章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
已知命題
p1:函數(shù)y=2x-2-x在R上為增函數(shù),
p2:函數(shù)y=2x+2-x在R上為減函數(shù),
則在命題q1:p1∨p2,q2:p1∧p2,q3:(p1)∨p2和q4:p1∧(p2)中,真命題是( )
(A)q1,q3 (B)q2,q3 (C)q1,q4 (D)q2,q4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com