5.三個(gè)數(shù)${log_2}\frac{1}{5}\;,\;{2^{0.1}}\;,\;{2^{-1}}$的大小關(guān)系是( 。
A.${log_2}\frac{1}{5}\;<{2^{0.1}}\;<{2^{-1}}$B.${2^{0.1}}\;<{2^{-1}}<{log_2}\frac{1}{5}$
C.${log_2}\frac{1}{5}\;<{2^{-1}}<{2^{0.1}}$D.${2^{0.1}}\;<{log_2}\frac{1}{5}<{2^{-1}}$

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:三個(gè)數(shù)$lo{g}_{2}\frac{1}{5}$<0,20.1>1,$0<{2}^{-1}=\frac{1}{2}$<1,
∴$lo{g}_{2}\frac{1}{5}$<2-1<20.1,
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.命題“若lna>lnb,則a>b”是真命題(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)f(x)=log3(x2+2x-8)的定義域?yàn)锳,函數(shù)g(x)=x2+(m+1)x+m.
(1)若m=-4時(shí),g(x)≤0的解集為B,求A∩B;
(2)若存在$x∈[0,\frac{1}{2}]$使得不等式g(x)≤-1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知n∈N*,設(shè)Sn是單調(diào)遞減的等比數(shù)列{an}的前n項(xiàng)和,a1=$\frac{1}{2}$且S2+a2,S4+a4,S3+a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{nan}的前n項(xiàng)和為T(mén)n,求證:對(duì)于任意正整數(shù)n,$\frac{1}{2}≤{T_n}<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)x∈[-3,-1)時(shí),f(x)=-(x+2)2,當(dāng)x∈[-1,3)時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2017)的值為( 。
A.336B.337C.1676D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)y=sinwx在(0,1)至多有三個(gè)最大值,求(w>0)
(2)y=sin(wx+$\frac{π}{3}$)在(0,1)至多有三個(gè)最大值,求w的取值范圍(w>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a>b,則下列不等式中恒成立的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.a3>b3C.$\frac{1}{a}$>$\frac{1}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知A={x|x<a},B={x|1<x<4},若A⊆∁RB,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1)B.(-∞,4]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系中,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4co{s}^{2}\frac{θ}{2}-1}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩坐標(biāo)系取相同的單位長(zhǎng)度,曲線C2的極坐標(biāo)方程為ρ=-2sin(θ+$\frac{π}{6}$).
(1)把曲線C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求曲線C1與C2的交點(diǎn)M(ρ1,θ1)的極坐標(biāo),其中ρ1≤0,0≤θ1<2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案