如圖,直四棱柱ABCD-A1B1C1D1中,四邊形ABCD是梯形,AD∥BC,AC⊥CD,E是AA1上的一點.
(1)求證:CD⊥平面ACE;
(2)若平面CBE交DD1于點F,求證:EF∥AD.

【答案】分析:(1)要證CD⊥ACE,只需證明CD垂直平面ACE內(nèi)的兩條相交直線AC與AA1即可.
(2)平面CBE交DD1于點F,證明EF∥AD,只需證明BC∥平面ADD1A1,EF∥BC,即可.
解答:證明:(1)因為直四棱柱ABCD-A1B1C1D1,所以AA1⊥平面ABCD,因為CD?平面ABCD,
所以AA1⊥CD,因為AC⊥DC,
AC?平面AEC,A1A∩AC=A,
所以CD⊥平面ACE
(2)因為AD∥BC,AD?平面ADD1A1,BC不在平面ADD1A1,所以BC∥平面ADD1A1,因為BC?平面BCE,
平面BCE∩平面ADD1A1=EF,所以EF∥BC,
因為AD∥BC,所以EF∥AD.
點評:本小題主要考查空間線面關(guān)系、直線與平面垂直,直線與直線平行等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:直三棱柱ABC-A′B′C′的體積為V,點P、Q分別在側(cè)棱AA′和CC′上,AP=C′Q,則四棱錐B-APQC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AB⊥BC,D為AC的中點,AA1=AB=2.
(1)求證:AB1∥平面BC1D;
(2)若四棱錐B-DAA1C1的體積為2,求二面角C-BC1-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠ABC=45°,其側(cè)面展開圖是邊長為8的正方形.E、F分別是側(cè)棱AA1、CC1上的動點,AE+CF=8.
(1)證明:BD⊥EF;
(2)當(dāng)CF=
14
CC1時,求面BEF與底面ABCD所成二面角的正弦值;
(3)多面體AE-BCFB1的體積V是否為常數(shù)?若是,求這個常數(shù),若不是,求V的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)如圖,直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且∠ABC=60°,E為棱CD的中點.
(Ⅰ)求證:A1C∥平面AED1
(Ⅱ)求證:平面AED1⊥平面CDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點E在棱CC1上,點E是棱C1C上一點.
(1)求證:無論E在任何位置,都有A1E⊥BD
(2)試確定點E的位置,使得A1-BD-E為直二面角,并說明理由.
(3)試確定點E的位置,使得四面體A1-BDE體積最大.并求出體積的最大值.

查看答案和解析>>

同步練習(xí)冊答案