在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。

(1)設(shè)動點P滿足,求點P的軌跡;

(2)設(shè),求點T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān))。

 

 

【答案】

 [解析] 本小題主要考查求簡單曲線的方程,考查方直線與橢圓的方程等基礎(chǔ)知識?疾檫\算求解能力和探究問題的能力。滿分16分。

(1)設(shè)點P(x,y),則:F(2,0)、B(3,0)、A(-3,0)。

,得 化簡得

故所求點P的軌跡為直線

(2)將分別代入橢圓方程,以及得:M(2,)、N(,

直線MTA方程為:,即,

直線NTB 方程為:,即。

聯(lián)立方程組,解得:,

所以點T的坐標(biāo)為

(3)點T的坐標(biāo)為

直線MTA方程為:,即,

直線NTB 方程為:,即。

分別與橢圓聯(lián)立方程組,同時考慮到,

解得:、。

(方法一)當(dāng)時,直線MN方程為:

 令,解得:。此時必過點D(1,0);

當(dāng)時,直線MN方程為:,與x軸交點為D(1,0)。

所以直線MN必過x軸上的一定點D(1,0)。

(方法二)若,則由,得,

此時直線MN的方程為,過點D(1,0)。

,則,直線MD的斜率,

直線ND的斜率,得,所以直線MN過D點。

因此,直線MN必過軸上的點(1,0)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案