16.在銳角△ABC中,內角A,B,C所對的邊分別為a,b,c,且$a=\frac{1}{2}$,a+b+c=sinA+sinB+sinC.
(1)求角A的大小;
(2)求△ABC面積的最大值.

分析 (1)設$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=k$,則a+b+c=k(sinA+sinB+sinC,所以k=1.于是sinA=$\frac{1}{2}$;
(2)利用余弦定理得出b2+c2=$\sqrt{3}$bc+$\frac{1}{4}$,再利用基本不等式得出bc≤$\frac{1}{4(2-\sqrt{3})}$,從而利用三角形的面積公式即可計算得解三角形的面積最大值.

解答 解:(1)設$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=k$,則a=ksinA,b=ksinB,c=ksinC,
∴a+b+c=k(sinA+sinB+sinC),
又∵a+b+c=sinA+sinB+sinC,
∴k=1.
∴sinA=a=$\frac{1}{2}$,
∵A是銳角,
∴A=$\frac{π}{6}$.
(2)∵a2=b2+c2-2bccosA=b2+c2-$\sqrt{3}$bc=$\frac{1}{4}$,即:b2+c2=$\sqrt{3}$bc+$\frac{1}{4}$,
∴$\sqrt{3}$bc+$\frac{1}{4}$≥2bc,解得:bc≤$\frac{1}{4(2-\sqrt{3})}$,當且僅當b=c時等號成立,
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×$$\frac{1}{4(2-\sqrt{3})}$×$\frac{1}{2}$=$\frac{1}{8}$+$\frac{\sqrt{3}}{16}$,當且僅當b=c時等號成立,
∴△ABC面積的最大值為$\frac{1}{8}$+$\frac{\sqrt{3}}{16}$.

點評 本題考查了正,余弦定理,基本不等式,三角形面積公式在解三角形的應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域是[-3,3],它們在x∈[0,3]上的圖象如圖所示,則不等式f(x)•g(x)≥0的解集是[-3,-$\frac{3}{2}$]∪[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線2x-y+1=0的傾斜角為θ,則sin2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)滿足:(1)定義域為R;(2)對任意的x∈R,有f(x+2)=2f(x);(3)當x∈[-1,1]時,$f(x)=cos\frac{π}{2}x$,若函數(shù)$g(x)=\left\{\begin{array}{l}{e^x},x≤0\\ lnx,x>0\end{array}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-5,5]上零點的個數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=sin(x+\frac{π}{2})$,$g(x)=cos(x-\frac{π}{2})$,則下列結論中正確的是( 。
A.函數(shù)y=f(x)•g(x)的最小正周期為2π
B.函數(shù)y=f(x)•g(x)的最大值為1
C.$x=\frac{π}{2}$是函數(shù)y=f(x)•g(x)的圖象的一條對稱軸
D.函數(shù)y=f(x)•g(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$是單調增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}的前n項和${S_n}={n^2}-2n$,那么它的通項公式為an2n-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知△ABC的三個頂點A(4,0),B(8,10),C(0,6).
(Ⅰ) 求AB邊上的高線所在直線方程;
(Ⅱ) 求BC邊上的中線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知拋物線C:y2=4x,過點A(-1,0)的直線交拋物線C于P(x1,y1),Q(x2,y2)兩點,設$\overrightarrow{AP}=λ\overrightarrow{AQ}$.
(Ⅰ)試求x1,x2的值(用λ表示);
(Ⅱ)若λ∈[$\frac{1}{3}$,$\frac{1}{2}$],求當|PQ|最大時,直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={x|ax2+ax+6=0},若集合A⊆{2,3},求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案