分析 (1)設$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=k$,則a+b+c=k(sinA+sinB+sinC,所以k=1.于是sinA=$\frac{1}{2}$;
(2)利用余弦定理得出b2+c2=$\sqrt{3}$bc+$\frac{1}{4}$,再利用基本不等式得出bc≤$\frac{1}{4(2-\sqrt{3})}$,從而利用三角形的面積公式即可計算得解三角形的面積最大值.
解答 解:(1)設$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=k$,則a=ksinA,b=ksinB,c=ksinC,
∴a+b+c=k(sinA+sinB+sinC),
又∵a+b+c=sinA+sinB+sinC,
∴k=1.
∴sinA=a=$\frac{1}{2}$,
∵A是銳角,
∴A=$\frac{π}{6}$.
(2)∵a2=b2+c2-2bccosA=b2+c2-$\sqrt{3}$bc=$\frac{1}{4}$,即:b2+c2=$\sqrt{3}$bc+$\frac{1}{4}$,
∴$\sqrt{3}$bc+$\frac{1}{4}$≥2bc,解得:bc≤$\frac{1}{4(2-\sqrt{3})}$,當且僅當b=c時等號成立,
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×$$\frac{1}{4(2-\sqrt{3})}$×$\frac{1}{2}$=$\frac{1}{8}$+$\frac{\sqrt{3}}{16}$,當且僅當b=c時等號成立,
∴△ABC面積的最大值為$\frac{1}{8}$+$\frac{\sqrt{3}}{16}$.
點評 本題考查了正,余弦定理,基本不等式,三角形面積公式在解三角形的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)y=f(x)•g(x)的最小正周期為2π | |
B. | 函數(shù)y=f(x)•g(x)的最大值為1 | |
C. | $x=\frac{π}{2}$是函數(shù)y=f(x)•g(x)的圖象的一條對稱軸 | |
D. | 函數(shù)y=f(x)•g(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$是單調增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com