已知tanθ=-sin
17π
6
,則tan(θ+
π
4
)=
 
考點:兩角和與差的正切函數(shù),同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:依題意,可得tanθ=-
1
2
,利用兩角和的正切公式即可求得答案.
解答: 解:∵tanθ=-sin
17π
6
=sin
6
=-
1
2
,
∴tan(θ+
π
4
)=
tanθ+tan
π
4
1-tanθtan
π
4
=
-
1
2
+1
1-(-
1
2
)×1
=
1
3

故答案為:
1
3
點評:本題考查兩角和與差的正切函數(shù),考查誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x
-xm,且f(4)=-
7
2
,求:
(1)m的值;
(2)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
x
-1,1),
b
=(1,
1
y
)(x>0,y>0),若
a
b
,則x+4y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了改善同學(xué)們的就餐環(huán)境,學(xué)校決定新購進1200張餐桌和2400條桌椅(1張餐桌配2條餐椅),某車間接到了這批桌椅的生產(chǎn)任務(wù),要求在30天內(nèi)完成交貨,已知該車間有甲、乙兩個小組,甲組有24個工人,乙組有18個工人,無論甲組還是乙組,每個工人每天均能生產(chǎn)餐桌2張或餐椅3條,車間主任安排甲組專門生產(chǎn)餐桌,乙組專門生產(chǎn)餐椅.
(1)甲組每天可生產(chǎn)餐桌
 
張,甲組完成這批餐桌的生產(chǎn)任務(wù)需要
 
天;
(2)為了提高效率,車間主任準(zhǔn)備從甲組抽調(diào)若干工人到乙組,使甲乙兩組每天生產(chǎn)出來的餐桌和桌椅配套,問:車間主任應(yīng)從甲組抽調(diào)多少工人到乙組;
(3)你認為該車間能在規(guī)定時間內(nèi)按時交貨嗎?如果能,請求出最快的交貨時間;如果不能,你認為至少還需要從其他車間調(diào)進幾個具有相同生產(chǎn)能力的工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某大學(xué)自主招生考試中,所有選報Ⅱ類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達”兩個科目的考試,成績分為A,B,C,D,E五個等級.某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計如下圖所示,其中“數(shù)學(xué)與邏輯”科目的成績?yōu)锽的考生有10人.

(1)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(2)若等級A,B,C,D,E分別對應(yīng)5分,4分,3分,2分,1分,求該考場考生“數(shù)學(xué)與邏輯”科目的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=8,a4=2,滿足an+2=2an+1-an,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
n(12-an)
(n∈N*),Tn=b1+b2+…+bn(n∈N*),求最大的整數(shù)m,使得對任意n∈N*,均有Tn
m
32
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>0},B={x|x≥1},則A∩(∁RB)等于(  )
A、{x|x>1}
B、{x|x>0}
C、{x|0<x<1}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x2+y2-2x-2y+1≤0
x≤y≤1
,則
y-3
x-2
的最小值是( 。
A、2
B、
4
3
C、1
D、
2
3

查看答案和解析>>

同步練習(xí)冊答案