直三棱柱中,,
(1)求證:平面平面
(2)求三棱錐的體積.
解:(1)直三棱柱ABC—A1B1C1中,BB1⊥底面ABC,
則BB1⊥AB,BB1⊥BC,
又由于AC=BC=BB1=1,AB1=,則AB=,
則由AC2+BC2=AB2可知,AC⊥BC,
又由上BB1⊥底面ABC可知BB1⊥AC,則AC⊥平面B1CB,
所以有平面AB1C⊥平面B1CB;-
(2)三棱錐A1—AB1C的體積
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中.EA⊥平面ABC,

DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中點.
(Ⅰ)求證:CM⊥EM ;
(Ⅱ)求多面體ABCDE的體積
(Ⅲ)求直線DE與平面EMC所成角的正切值.             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四面體PABC中,已知PA=PB=PC=AB=AC=,BC=,則P-ABC的體積V的取值范圍是_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在六面體ABCDA1B1C1D1中,四邊形ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.

(Ⅰ)求證:A1C1與AC共面,B1D1與BD共面;
(Ⅱ)求證:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大。ㄓ梅慈呛瘮(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把半徑為1的4個小球裝入一個大球內(nèi),則此大球的半徑的最小值為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABCA1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分別是A1B1、A1A的中點.

(1)求的長;
(2)求cos<>的值;
(3)求證: A1BC1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若一個底面邊長為,棱長為的正六棱柱的所有頂點都在一個平面上,則此球的體積為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個不同的平面a、b和兩條不重合的直線m、n,有下列四個命題  
①若m//n,m^a,則n^a;         ②若m^a,m^b,則a//b;
③若m^a,m//n,nÌb,則a^b;   ④若m//a,aÇb=n,則m//n.
其中正確命題的個數(shù)是       
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在三棱錐P-ABC中, PA=3,AC=AB=4,PB=PC=BC=5,D、E分別是BC、AC的中點,F(xiàn)為PC上的一點,且PF:FC=3:1.
(1)求證:PA⊥BC;
(2)試在PC上確定一點G,使平面ABG∥平面DEF;
(3)在滿足(2)的情況下,求二面角G-AB-C的平面
角的正切值.


 
 

查看答案和解析>>

同步練習(xí)冊答案