(2011•重慶三模)若
lim
n→∞
(
1-x
x
)
n
存在,則實數(shù)x的取值范圍是(  )
分析:由題意可得|
1
x
-1|≤1,即-1≤
1
x
-1≤1,由此求得實數(shù)x的取值范圍.
解答:解:∵
lim
n→∞
(
1-x
x
)
n
=
lim
n→∞
(
1
x
-1)
n
 存在,∴|
1
x
-1|≤1,∴-1≤
1
x
-1≤1,0<
1
x
≤2,
∴x≥
1
2
,
故選C.
點評:本題主要考查極限及其運算法則的應用,函數(shù)的極限存在的條件,得到|
1
x
-1|≤1,是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•重慶三模)若(x-
2ax
)6
的展開式中常數(shù)項為-160,則常數(shù)a=
1
1
,展開式中各項系數(shù)之和為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶三模)已知直線y=kx(k>0)與函數(shù)y=|sinx|的圖象恰有三個公共點A(x1,y1),B(x2,y2),C(x3,y3)其中x1<x2<x3,則有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶三模)若函數(shù)y=f(x)的導數(shù)f′(x)=6x2+5,則f(x)可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶三模)設函數(shù)f(x)=
2x+3
3x-1
,則f-1(1)
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶三模)設函數(shù)f(x)=
23
x3+x2
+ax+b(x>-1).
(I)若函數(shù)f(x)在其定義域上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(II)若函數(shù)f(x)在其定義域上既有極大值又有極小值,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案