13.已知圓O:x2+y2=16上任意一點(diǎn)P,過P作x軸的垂線段PA,A為垂足,當(dāng)點(diǎn)P在圓上運(yùn)動時(shí),線段PA的中點(diǎn)M的軌跡記為曲線C,則曲線C的離心率為$\frac{\sqrt{3}}{2}$.

分析 利用已知條件求出橢圓的方程,然后利用橢圓的離心率即可.

解答 解:設(shè)M(x,y),則P(x,2y),代入圓的方程并化簡得:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$,
解得a=4,b=2,c=$2\sqrt{3}$.
橢圓的離心率為:$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題考查軌跡方程的求法,橢圓的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在數(shù)列{an}中,若存在非零實(shí)數(shù)T,使得${a_{n+T}}={a_n}({N∈{n^*}})$成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.若數(shù)列{bn}滿足bn+1=|bn-bn-1|,且b1=1,b2=a(a≠0),則當(dāng)數(shù)列{bn}的周期最小時(shí),其前2017項(xiàng)的和為( 。
A.672B.673C.3024D.1345

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線x-2y-3=0在y軸上的截距是(  )
A.3B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y≤2\\ x≥0\\ y≥0\end{array}\right.$,則當(dāng)y≤ax+a-1恒成立時(shí),實(shí)數(shù)a的取值范圍是a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線$l:x-\sqrt{3}y+1=0$的斜率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某小組共10人,利用假期參加義工活動.已知參加義工活動的次數(shù)與相對應(yīng)的人數(shù)的對應(yīng)關(guān)系如表:
次數(shù)1234
人數(shù)1441
現(xiàn)從這10人中隨機(jī)選出2人作為該組代表在活動總結(jié)會上發(fā)言.
(Ⅰ)設(shè)A為事件“選出的2人參加義工活動次數(shù)之和為6”,求事件A發(fā)生的概率;
(Ⅱ)設(shè)X為選出的2人參加義工活動次數(shù)之和,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2016年年底,某商業(yè)集團(tuán)根據(jù)相關(guān)評分標(biāo)準(zhǔn),對所屬20家商業(yè)連鎖店進(jìn)行了年度考核評估,并依據(jù)考核評估得分(最低分60分,最高分100分)將這些連鎖店分別評定為A,B,C,D四個(gè)類型,其考核評估標(biāo)準(zhǔn)如表:
評估得分[60,70)[70,80)[80,90)[90,100]
評分類型DCBA
考核評估后,對各連鎖店的評估分?jǐn)?shù)進(jìn)行統(tǒng)計(jì)分析,得其頻率分布直方圖如下:
(Ⅰ)評分類型為A的商業(yè)連鎖店有多少家;
(Ⅱ)現(xiàn)從評分類型為A,D的所有商業(yè)連鎖店中隨機(jī)抽取兩家做分析,求這兩家來自同一評分類型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={-2,0,2},B={x|x2-x-2=0},則A∩B=( 。
A.B.{0}C.{2}D.{-2}

查看答案和解析>>

同步練習(xí)冊答案