函數(shù)y=sin(
π
6
-2x
)cos(
π
6
+2x
)的周期及單調(diào)遞減區(qū)間分別是(  )
A、
π
2
,(
2
+
π
8
,
2
+
8
)(k∈Z)
B、π(
2
+
π
8
,
2
+
8
)(k∈Z)
C、
π
2
,(
2
-
π
8
,
2
+
π
8
)(k∈Z)
D、
π
4
,(
2
-
π
8
2
+
π
8
)(k∈Z)
考點:正弦函數(shù)的單調(diào)性,二倍角的正弦,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:化簡解析式可得y=
3
4
-
1
2
sin4x,從而可求周期,由2kπ-
π
2
<4x<2kπ+
π
2
可解得單調(diào)遞減區(qū)間.
解答: 解:∵y=sin(
π
6
-2x
)cos(
π
6
+2x
)=
1
2
[sin
π
3
+sin(-4x)]=
3
4
-
1
2
sin4x,
∴T=
4
=
π
2
,
∴由2kπ-
π
2
<4x<2kπ+
π
2
可解得:x∈(
2
-
π
8
,
2
+
π
8
)(k∈Z),
故選:C.
點評:本題主要考察了正弦函數(shù)的單調(diào)性,三角函數(shù)的周期性及其求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c
(1)若△ABC面積S△ABC=
3
2
,c=2,A=60°,求a,b的值;
(2)若a=c•cosB,且b=c•sinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象是如圖所示的折線段OAB,已知點A坐標(biāo)為(1,2)點B的坐標(biāo)為(3,0),若P(x,y)是函數(shù)g(x)=f(x)(x-1)圖象上的動點,則x+y的最大值為( 。
A、
13
4
B、2
C、
7
4
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,T1=a1a2…a100=25,T2=a101a102…a200=75,則T3=a201a202…a300=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
4
)圖象上的所有點向左平移
π
4
個單位,得到的圖象的函數(shù)解析式是(  )
A、y=sin(2x+
4
B、y=sin(2x+
π
2
C、y=sin(2x-
π
4
D、y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(1-2a)x+5(x≤12)
ax-13(x>12)
,若數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是遞減數(shù)列,則實數(shù)a的取值范圍是( 。
A、(
1
2
,1)
B、(
1
2
,
3
4
C、(
1
2
2
3
D、(
3
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,Sn是其前n項和,若S2≤3,S3≥6,則S4的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinx-sin(
2
-x)=
2
,則tanx+
1
tan(x-π)
的值是( 。
A、2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(1,2)到直線y=2x+1的距離為( 。
A、
5
5
B、
2
5
5
C、
5
D、2
5

查看答案和解析>>

同步練習(xí)冊答案