【題目】如圖,四棱錐,底面為直角梯形,,.

(1)求證:平面平面;

(2)若直線(xiàn)與平面所成角為,求直線(xiàn)與平面所成角的正弦值.

【答案】(1)見(jiàn)解析(2)

【解析】分析:(1)根據(jù)題意,設(shè)法證明平面,即可證得平面平面;;

2 如圖以為原點(diǎn)建立空間直角坐標(biāo)系,利用空間向量求直線(xiàn)與平面所成角的正弦值.

詳解:

1)證明:因?yàn)?/span>為直角梯形,

又因?yàn)?/span>,所以,

所以,所以,

又因?yàn)?/span>,,所以平面

又因?yàn)?/span>平面,

所以平面平面

(2)作,因?yàn)?/span>,所以中點(diǎn),

由(1)知平面平面

且平面平面,

所以平面,

所以為直線(xiàn)與平面所成的角,

設(shè),因?yàn)?/span>,

,所以

如圖以為原點(diǎn)建立空間直角坐標(biāo)系,則

,,, 9

設(shè)平面法向量,則

,取,則,

所以平面一個(gè)法向量,

設(shè)與平面所成角為,則

,

所以直線(xiàn)與平面所成角為正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行中學(xué)生詩(shī)詞大賽,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()

A.640B.520C.280D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下表:

使用智能手機(jī)

不使用智能手機(jī)

總計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

4

8

12

學(xué)習(xí)成績(jī)不優(yōu)秀

16

2

18

總計(jì)

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?

(Ⅱ)從學(xué)習(xí)成績(jī)優(yōu)秀的12名同學(xué)中,隨機(jī)抽取2名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.

參考公式:,其中

參考數(shù)據(jù):

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)設(shè)0x,求函數(shù)yx32x)的最大值;

2)解關(guān)于x的不等式x2-a+1x+a0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng),且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為
(2)若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是 . (寫(xiě)出所有正確結(jié)論的序號(hào))
x∈(﹣∞,1),f(x)>0;
x∈R,使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣ )+cos(x﹣ ),g(x)=2sin2
(1)若α是第一象限角,且f(α)= ,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)證明:AC⊥B1D;
(2)求直線(xiàn)B1C1與平面ACD1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小區(qū)抽取100戶(hù)居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示:

(Ⅰ)直方圖中x的值為;
(Ⅱ)在這些用戶(hù)中,用電量落在區(qū)間[100,250)內(nèi)的戶(hù)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四棱錐中,底面是矩形,平面,,分別是,的中點(diǎn),與平面所成的角的正切值是;

(1)求證:平面;

(2)求二面角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案