一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖可知:該幾何體為橫放的直三棱柱.即可得出.
解答: 解:由三視圖可知:該幾何體為橫放的直三棱柱.
∴該幾何體的體積V=
1
2
×2
3
×1×3
=3
3

故答案為:3
3
點(diǎn)評(píng):本題考查了三棱柱的三視圖的及其體積計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)在相同的5次數(shù)學(xué)測(cè)試中,測(cè)試成績(jī)?nèi)鐖D所示,設(shè)
S,S分別為甲、乙兩位同學(xué)數(shù)學(xué)測(cè)試成績(jī)的標(biāo)準(zhǔn)差,則S,S
的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行圖中的程序框圖,那么最后輸出的正整數(shù)i=(  )
A、43B、44C、45D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x(9-x),對(duì)于任意給定的m位自然數(shù)n0=
.
amam-1a2a1
(其中a1是個(gè)位數(shù)字,a2是十位數(shù)字,…),定義變換A:A(n0)=f(a1)+f(a2)+…+f(am).并規(guī)定A(0)=0.記n1=A(n0),n2=A(n1),…,nk=A(nk-1),….
(Ⅰ)若n0=2015,求n2015;
(Ⅱ)當(dāng)m≥3時(shí),證明:對(duì)于任意的m(m∈N*)位自然數(shù)n均有A(n)<10m-1;
(Ⅲ)如果n0<10m(m∈N*,m≥3),寫出nm的所有可能取值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{xn}對(duì)任意的n∈N*,都有xn-2xn+1+xn+2<0成立,則稱數(shù)列{xn}為“亞等差數(shù)列”,設(shè)數(shù)列{an}是各項(xiàng)都為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,且a1=1,S1+S2+S3=
17
4

(1)求證:數(shù)列{Sn}是“亞等差數(shù)列”;
(2)設(shè)bn=(1-nan)t+n2an,若數(shù)列b3,b4,b5…,bm是“亞等差數(shù)列”,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|ax-1|與g(x)=(a-1)x的圖象沒有交點(diǎn),那么實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0]
B、(0,
1
2
)
C、[
1
2
,1)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某志愿者服務(wù)隊(duì)有12名男隊(duì)員、x名女隊(duì)員.
(Ⅰ)若采用分層抽樣的方法隨機(jī)抽取20名志愿者參加技術(shù)培訓(xùn),抽取到的女隊(duì)員人數(shù)是16,求x的值;
(Ⅱ)若從A,B,C,D,E五人中任意抽取三人到某醫(yī)院去服務(wù),求A隊(duì)員被抽到但B隊(duì)員沒被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)圖所示的程序框圖,若a0=a5=1,a1=a4=5,a2=a3=10,x0=1,則輸出的V值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=sin(2x-
π
6
)  (x∈R)
,給出下列三個(gè)結(jié)論:
①對(duì)于任意的x∈R,都有f(x)=cos(2x-
3
)
;
②對(duì)于任意的x∈R,都有f(x+
π
2
)=f(x-
π
2
)
;
③對(duì)于任意的x∈R,都有f(
π
3
-x)=f(
π
3
+x)

其中,全部正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案