6.in1320°的值是-$\frac{\sqrt{3}}{2}$.

分析 運(yùn)用誘導(dǎo)公式及特殊角的三角函數(shù)值即可化簡(jiǎn)求值.

解答 解:sin1320°=sin(3×360°+240°)=sin(180°+60°)=-sin60°=-$\frac{\sqrt{3}}{2}$.
故答案為:-$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式及特殊角的三角函數(shù)值的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知α,β是兩個(gè)不同平面,給出下列四個(gè)條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個(gè)平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a∥α,b∥β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
其中可以推出α∥β的是(  )
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知球O的表面積是36π,A,B是球面上的兩點(diǎn),∠AOB=60°,C時(shí)球面上的動(dòng)點(diǎn),則四面體OABC體積V的最大值為$\frac{9\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等差數(shù)列{an}中,a5a7=6,a2+a10=5,則a10-a6=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,其頂點(diǎn)都在同一個(gè)球面上,則該球的內(nèi)接正方體的表面積為( 。
A.$\frac{19}{6}$B.$\frac{38}{3}$C.$\frac{57}{8}$D.$\frac{19}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C:x2+y2-4x-6y+3=0,直線l:mx+2y-4m-10=0(m∈R).當(dāng)l被C截得的弦長(zhǎng)最短時(shí),m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(1)求曲線C1與曲線C2交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別是曲線曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了了解某校學(xué)生喜歡吃零食是否與性別有關(guān),隨機(jī)對(duì)此校100人進(jìn)行調(diào)查,得到如下的列表:已知在全部100人中隨機(jī)抽取1人,抽到不喜歡吃零食的學(xué)生的概率為$\frac{2}{5}$.
喜歡吃零食不喜歡吃零食辣合計(jì)
男生401050         
女生203050
合計(jì)60             40100
(Ⅰ)請(qǐng)將上面的列表補(bǔ)充完整;
(Ⅱ)是否有99.9%以上的把握認(rèn)為喜歡吃零食與性別有關(guān)?說明理由.下面的臨界值表供參考:
p(K2≥k)0.0100.0050.001
k6.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,∠PAQ是某海灣旅游區(qū)的一角,其中∠PAQ=120°,為了營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委員會(huì)決定在直線海岸AP和AQ上分別修建觀光長(zhǎng)廊AB和AC,其中AB是寬長(zhǎng)廊,造價(jià)是800元/米;AC是窄長(zhǎng)廊,造價(jià)是400元/米;兩段長(zhǎng)廊的總造價(jià)為120萬元,同時(shí)在線段BC上靠近點(diǎn)B的三等分點(diǎn)D處建一個(gè)觀光平臺(tái),并建水上直線通道AD(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是1000元/米.
(1)若規(guī)劃在三角形ABC區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求△ABC的面積最大,那么AB和AC的長(zhǎng)度分別為多少米?
(2)在(1)的條件下,建直線通道AD還需要多少錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案