設(shè)等比數(shù)列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列,設(shè)數(shù)列{
1
dn
}的前n項和為Tn,證明Tn
15
16
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì),數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得an+1-an=2an,a2=3a1,a2=2a1+2,由此能求出an=2•3n-1
(2)由已知得dn=
3n-1
n+1
,由此利用錯位相減法能證明Tn=
15
16
-
2n+n
16×3n-1
15
16
解答: (1)解:∵an+1=2Sn+2(n∈N*),∴an=2Sn-1+2(n∈N*,n≥2),
兩式相減,得an+1-an=2an,
即an+1=3an,n≥2,
∵等比數(shù)列{an},∴a2=3a1
又a2=2a1+2,∴a1=2,
∴an=2•3n-1
(2)證明:由(1)得an+1=2•3n,an=2•3n-1,
∵an+1=an+(n+1)dn,
dn=
3n-1
n+1
,
∴Tn=
2
30
+
3
4×3
+
4
32
+…+
n+1
3n-1
,①
1
3
Tn
=
2
4×3
+
3
32
+
4
33
+…+
n+1
3n
,②
①-②,得
2
3
Tn
=
2
30
+
1
31
+
1
32
+…+
1
3n-1
-
n+1
3n

=
1
2
+
1
4
×
1
3
(1-
1
3n-1
)
1-
1
3
-
n+1
3n

=
5
8
-
2n+5
3n
,
∴Tn=
15
16
-
2n+n
16×3n-1
15
16
點(diǎn)評:本題考查數(shù)列的通項公式的求法,考查不等式的證明,解題時要認(rèn)真審題,注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a2+b2+c2=8,則a+b+c的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A(7,4)、B(-8,2),在x軸上求點(diǎn)C,使|AC|+|BC|為最小,并求出此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}的前n項之和為Sn滿足Sn=(
an+1
2
2
(Ⅰ) 求a1,a2,a3,a4;
(Ⅱ)推測數(shù)列{an}的通項公式,并進(jìn)行證明;
(Ⅲ)設(shè)bn=
1
anan+1
,數(shù)列{bn}的前n項和為Tn,若Tn
m
19
對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
2
sin(2x+
x
6
)+1,(x∈R)
(1)求它的振幅、最小正周期、初相;
(2)當(dāng)函數(shù)y取得最大值時,求自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
1
x
(1-
x
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知b=5,sinA=
7
4
,S△ABC=
15
7
4

(1)求c的值;
(2)求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1,(x>0)
0,x=0
-1,x<0
,g(x)=,
1,x∈Q
0,x∈RQ
,則f[g(π)]的值為(  )
A、1B、0C、-1D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+x-2,則f(2)=(  )
A、-1B、2C、4D、10

查看答案和解析>>

同步練習(xí)冊答案