精英家教網(wǎng)如圖,第一個圖是正三角形,將此正三角形的每條邊三等分,以中間一段為邊向外作正三角形,并擦去中間一段,得第2個圖,將第2個圖中的每一條邊三等分,以中間一段為邊向外作正三角形,并擦去中間一段,得第3個圖,如此重復操作至第n個圖,用an表示第n個圖形的邊數(shù),則數(shù)列an的前n項和Sn等于
 
分析:根據(jù)圖形得到,a1=3,a2=12,a3=48,由題意知:每一條邊經(jīng)一次變化后總變成四條邊,即
an
an-1
=4(n>2)
,由等比數(shù)列的定義知:an=3×4n-1,于是根據(jù)等比數(shù)列前n項和公式即可求解
解答:解:∵a1=3,a2=12,a3=48
由題意知:每一條邊經(jīng)一次變化后總變成四條邊,即
an
an-1
=4(n>2)

由等比數(shù)列的定義知:an=3×4n-1
∴Sn=
3×(1-4n)
1-4
=4n-1
故答案為:4n-1
點評:本題考查了等比數(shù)列的前n項和,還考查對圖形的閱讀能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)已知曲線C的參數(shù)方程為
x=1+2t
y=at2
(t為參數(shù),a∈R),點M(5,4)在曲線C 上,則曲線C的普通方程為
 

(2)已知不等式x+|x-2c|>1的解集為R,則正實數(shù)c的取值范圍是
 

(3)如圖,PC切圓O于點C,割線PAB經(jīng)過圓心A,PC=4,PB=8,則S△OBC
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)蜜蜂被認為是自然界中最杰出的建筑師,單個蜂巢可以近似地看作是一個正六邊形,如圖為一組蜂巢的截面圖.其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).
(1)試給出f(4),f(5)的值,并求f(n)的表達式(不要求證明);
(2)證明:
1
f(1)
+
1
f(2)
+
1
f(3)
+…+
1
f(n)
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一電子廣告,背景是由固定的一系列下頂點相接的正三角形組成,這列正三解形的底邊在同一直線上,正三角形的內(nèi)切圓由第一個正三角形的O點沿三角形列的底邊勻速向前滾動(如圖),設滾動中的圓與系列正三角形的重疊部分(如圖中的陰影)的面積S關于時間t的函數(shù)為S=f(t),則下列圖中與函數(shù)S=f(t)圖象最近似的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

蜜蜂被認為是自然界中最杰出的建筑師,單個蜂巢可以近似地看作是一個正六邊形,如圖為一組蜂巢的截面圖.其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=
37
37
;f(n)=
3n2-3n+1
3n2-3n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

蜜蜂被認為是自然界中最杰出的建筑師,單個蜂巢可以近似地看作是一個正六邊形,如圖2為一組蜂巢的截面圖.其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(n)=
3n2-3n+1
3n2-3n+1

查看答案和解析>>

同步練習冊答案