y=x2,當(dāng)x1=3,x2=3.1時(shí),f(x)的變化率為_(kāi)________.

答案:6.1
解析:

函數(shù)f(x)在[3,3.1]上的變化率為=6.1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:南通高考密卷·數(shù)學(xué)(理) 題型:044

已知向量p=(a,x+1),q=(x,a),m=(1,y),且(p-q)∥m,y與x的函數(shù)關(guān)系式為y=f(x).

(1)求f(x);

(2)判斷并證明函數(shù)y=f(x)當(dāng)x>a時(shí)的單調(diào)性;

(3)我們利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn),方法如下:對(duì)于f(x)定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4,…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.如果取f(x)定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年高考沖刺解答題突破、數(shù)學(xué) 題型:044

已知函數(shù)y=f(x)對(duì)于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列,方法如下:

對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造過(guò)程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過(guò)程就停止.

(ⅰ)如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列,求a的取值范圍;

(ⅱ)是否存在一個(gè)實(shí)數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn}?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;

(ⅲ)當(dāng)a=1時(shí),若x1=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有>0.則給出下列命題:

       ①f(2010)=-2;

       ②函數(shù)y=f(x)圖像的一條對(duì)稱軸為x=-6;

       ③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);

       ④方程f(x)=0在[-9,9]上有4個(gè)根.

       其中所有正確命題的序號(hào)為_(kāi)___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省上高二中2010屆高三適應(yīng)性考試(理) 題型:填空題

 已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有>0.則給出下列命題:

①f(2010)=-2;②函數(shù)y=f(x)圖象的一條對(duì)稱軸為x=-6;

③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);④方程f(x)=0在[-9,9]上有4個(gè)根.

其中所有正確命題的序號(hào)是__________。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案