14.樹德中學(xué)高一數(shù)學(xué)興趣班某同學(xué)探究發(fā)現(xiàn):△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c;在△ABC中有以下結(jié)論:
①若ab>c2;則0<C<$\frac{π}{3}$;
②若a+b>2c;則0<C<$\frac{π}{3}$;
③若a,b,c成等比數(shù)列(即b2=ac),則0<B≤$\frac{π}{3}$;
④若a2,b2,c2成等比數(shù)列,亦有0<B≤$\frac{π}{3}$;
他留下了下面兩個(gè)問題,請(qǐng)你完成:
(I)若a,b,c成等差數(shù)列,證明:sin A+sin C=2sin(A+C);
(II)若a2,b2,c2成等差數(shù)列,求B的取值范圍.
(參考公式:(1)x,y∈R,x2+y2≥2xy;(2)x,y∈R+,x+y≥2$\sqrt{xy}$;當(dāng)且僅當(dāng)x=y時(shí)取等)

分析 (I)由已知利用等差數(shù)列的性質(zhì)可得a+c=2b.由正弦定理得sinA+sinC=2sinB,進(jìn)而利用三角形內(nèi)角和定理,誘導(dǎo)公式即可得解.
(II)由已知利用等差數(shù)列的性質(zhì)可得2b2=a2+c2,由余弦定理,基本不等式可得cosB=$\frac{{{a^2}+{c^2}}}{4ac}$≥$\frac{1}{2}$,利用余弦函數(shù)的圖象和性質(zhì)即可得解.

解答 (本題滿分為12分)
解:(I)∵a,b,c成等差數(shù)列,
∴a+c=2b.由正弦定理得sin A+sin C=2sin B.
∵sin B=sin[π-(A+C)]=sin(A+C),
∴sin A+sin C=2sin(A+C).…(6分)
(II)∵a2,b2,c2成等差數(shù)列,
∴2b2=a2+c2
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{{a^2}+{c^2}-\frac{{{a^2}+{c^2}}}{2}}}{2ac}$=$\frac{{{a^2}+{c^2}}}{4ac}$≥$\frac{1}{2}$,當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立,
∴cosB的最小值為$\frac{1}{2}$.
∴$0<B≤\frac{π}{3}$.…(12分)

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),正弦定理,三角形內(nèi)角和定理,誘導(dǎo)公式,余弦定理,基本不等式,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于4,且經(jīng)過點(diǎn)P$(3,-2\sqrt{6})$的橢圓方程;
(2)過橢圓x2+2y2=2的左焦點(diǎn)引一條傾斜角為45°的直線與橢圓交A、B兩點(diǎn),橢圓的中心為O,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-x-1}$的單調(diào)遞減區(qū)間是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在${({\root{3}{2}-\frac{1}{2}})^{20}}$的展開式中,系數(shù)是有理數(shù)的項(xiàng)共有(  )
A.4項(xiàng)B.5項(xiàng)C.6項(xiàng)D.7項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)復(fù)數(shù)m2-1+(m+1)i是實(shí)數(shù),求實(shí)數(shù)m的值;
(2)復(fù)數(shù)$z=(\sqrt{x}-1)+({x^2}-3x+2)i$的對(duì)應(yīng)點(diǎn)位于第二象限,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),若點(diǎn)A是橢圓上運(yùn)動(dòng),且點(diǎn)A不在y軸上,點(diǎn)B在直線y=t上,且OA⊥OB,是否存在有序?qū)崝?shù)對(duì)(t,r)使得直線AB與圓O:x2+y2=r2總相切,若存在,求出所有滿足題意的有序?qū)崝?shù)對(duì)(t,r);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知f(x)是一次函數(shù),且滿足f[f(x)]=4x+3,求函數(shù)f(x)的解析式;
(2)已知二次函數(shù)f(x)滿足f(0)=2,f(x+1)-f(x)=2x-1對(duì)任意實(shí)數(shù)x都成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{2}$,3)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為( 。
A.($\frac{5}{2}$,$\frac{10}{3}$)B.($\frac{10}{3}$,+∞)C.[$\frac{10}{3}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),則tanα的值為-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案