【題目】如圖,在銳角△ABC中,∠BAC≠60°,過點B、C分別作△ABC外接圓的切線BD、CE,且滿足,直線DE與AB、AC的延長線分別交于點F、G、CF與BD交于點M,CE與BG交于點N.證明:.
【答案】見解析
【解析】
如圖所示,設(shè)兩條切線BD與CE交于點K,則BK=CK.
結(jié)合BD=CE,知.
作∠BAC的平分線AL與BC交于點L,聯(lián)結(jié)LM、LN.
由,知
∠ABC=∠DFB,∠FDB=∠DBC=∠BAC.
故.
再結(jié)合,BD=BC及內(nèi)角平分線定理可得
.
因此,.
同理,.
由此推出
∠ALM=180°-∠BAL=180°-∠CAL=∠ALN.
由及內(nèi)角平分線定理得:
.
故由AL=AL,∠ALM=∠ALN,LM=LN,得
.
從而,AM=AN.
證法2 由BD與EC均為△ABC外接圓的切線,知
∠DBC=∠BAC=∠ECB.
由BD=CE,得四邊形BCED為等腰梯形.
從而,.
又∠BFD=∠ABC,∠FDB=∠DBC=∠BAC,
故.
設(shè)△ABC的三條邊長分別為.
由
.
由.
故由,得
. ①
在△ABM中,由∠ABM=∠ABC+∠BAC,及余弦定理得
. ②
用同樣方法計算CN和時,只需在上述BM和的表達式①、②中將b、c交換.
而由式②知的表達式關(guān)于b、c對稱,故
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為
(1)當時,求函數(shù)的單調(diào)遞減區(qū)間.
(2)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海洋藍洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)在點處與軸相切
(1)求的值,并求的單調(diào)區(qū)間;
(2)當時,,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍;
(2)對于區(qū)間上的任意不相等的實數(shù)、,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.
其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.
表1:一級濾芯更換頻數(shù)分布表
一級濾芯更換的個數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級濾芯更換頻數(shù)條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com