6.根據(jù)條件回答下列問(wèn)題:
(1)求函數(shù)y=lg(tanx)的定義域;
(2)求函數(shù)$y=\frac{3sinx+1}{sinx-2}$的值域.

分析 (1)利用tanx>0,可得x∈(kπ,kπ+$\frac{π}{2}$),(k∈Z),可得函數(shù)y=lg(tanx)的定義域;
(2)分離常數(shù)可得y=3+$\frac{7}{sinx-2}$,由-1≤sinx≤1和不等式的性質(zhì)可得.

解答 解:(1)由tanx>0,可得x∈(kπ,kπ+$\frac{π}{2}$),(k∈Z)
∴函數(shù)y=lg(tanx)的定義域?yàn)椋╧π,kπ+$\frac{π}{2}$),(k∈Z);
(2)分離常數(shù)可得y=3+$\frac{7}{sinx-2}$,
∵-1≤sinx≤1,∴-3≤sinx-2≤-1,∵-7≤$\frac{7}{sinx-2}$≤-$\frac{7}{3}$,
∴-4≤3+$\frac{7}{sinx-2}$≤$\frac{2}{3}$,即函數(shù)的值域?yàn)閇-4,$\frac{2}{3}$].

點(diǎn)評(píng) 本題考查函數(shù)的定義域,考查三角函數(shù)的最值,分離常數(shù)并利用不等式的性質(zhì)是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,+∞)}\\{{x}^{3}+{a}^{2}-3a+2,x∈(-∞,0)}\end{array}\right.$在R上是增函數(shù),求實(shí)數(shù)α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.曲線$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù))上的點(diǎn)到曲線ρcosθ-ρsinθ+1=0的最大距離為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.三棱錐的棱長(zhǎng)均為4$\sqrt{6}$,頂點(diǎn)在同一球面上,則該球的表面積為( 。
A.36πB.72πC.144πD.288π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列四個(gè)函數(shù)中在(0,+∞)上為增函數(shù)的是(  )
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求下列各題:
(1)計(jì)算:${({\sqrt{1000}})^{-\frac{2}{3}}}×{({\root{3}{{{{10}^2}}}})^{\frac{9}{2}}}$;             
(2)計(jì)算lg20+log10025;
(3)求函數(shù)$f(x)=\sqrt{1-{{log}_2}(4x-5)}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,PA垂直于矩形ABCD所在的平面,則圖中與平面PCD垂直的平面是( 。
A.平面ABCDB.平面PBCC.平面PADD.平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知(1,1)是直線l被橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1所截得的線段的中點(diǎn),則l的斜率是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.直線x+$\sqrt{3}$y+k=0的傾斜角是( 。
A.$\frac{5}{6}$πB.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案