如圖,已知直線l與拋物線相切于點(diǎn)P(2,1),且與軸交于點(diǎn)A,定點(diǎn)B的坐標(biāo)為(2,0) .

(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M的軌跡C;
(2)若過(guò)點(diǎn)B的直線l(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

(1)(2)(,1)

解析試題分析:(1)先對(duì)原函數(shù)求導(dǎo),然后求出斜率,再利用 進(jìn)行整理即可.
(2)先設(shè)方程為 與  聯(lián)立,結(jié)合根與系數(shù)的關(guān)系以及判別式得到再由
,即可
(1)由, ∴.∴直線的斜率為,
的方程為,∴點(diǎn)A的坐標(biāo)為(1,0).           (2分)
設(shè),則(1,0),,,由
,整理,得.           (4分)
(2)方法一:如圖,由題意知的斜率存在且不為零,設(shè)方程為 ①,將①代入,整理,得,設(shè),,則            (7分)

, 則,由此可得 
,且.∴    
由②知
,                 (10分)
,∴,解得    (12分)
又∵, ∴
∴△OBE與△OBF面積之比的取值范圍是(,1).        (13分)
方法二:如圖,由題意知l’的斜率存在且不為零,設(shè)l’ 方程為 ①,將①代入,整理,得,設(shè),,則 ② ;  (7分)
, 則,由此可得 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左焦點(diǎn),離心率為,函數(shù)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),,過(guò)的直線交橢圓兩點(diǎn),求的最小值,并求此時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為,為上頂點(diǎn),為坐標(biāo)原點(diǎn),若△的面積為,且橢圓的離心率為
(1)求橢圓的方程;
(2)是否存在直線交橢圓于,兩點(diǎn), 且使點(diǎn)為△的垂心?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的焦點(diǎn)在軸上, 分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓在第一象限內(nèi)的點(diǎn),直線軸于點(diǎn)
(1)當(dāng)時(shí),
(1)若橢圓的離心率為,求橢圓的方程;
(2)當(dāng)點(diǎn)P在直線上時(shí),求直線的夾角;
(2) 當(dāng)時(shí),若總有,猜想:當(dāng)變化時(shí),點(diǎn)是否在某定直線上,若是寫出該直線方程(不必求解過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過(guò)橢圓E:=1(a>b>0)的右焦點(diǎn),且被圓C所截得的弦長(zhǎng)為,點(diǎn)A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求·的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)圓C與兩圓(x+)2+y2=4,(x-)2+y2=4中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求C的圓心軌跡L的方程;
(2)已知點(diǎn)M(,),F(xiàn)(,0),且P為L(zhǎng)上動(dòng)點(diǎn),求||MP|-|FP||的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過(guò)點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),離心率為,左右焦點(diǎn)分別為.

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),與以為直徑的圓交于兩點(diǎn),且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程為,定直線的方程為.動(dòng)圓與圓外切,且與直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過(guò)點(diǎn)作直線的垂線恰好經(jīng)過(guò)點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案