已知P是圓上任意一點,點N的坐標為(2,0),線段NP的垂直平分線交直線MP于點Q,當點P在圓M上運動時,點Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當時,在x軸上是否存在一定點E,使得對曲線C的任意一條過E的弦AB,為定值?若存在,求出定點和定值;若不存在,請說明理由.
(1)以,為焦點的橢圓;(2)定值6,定點E.設經過點的直線方程,代入
解析試題分析:(1)利用線段的垂直平分線交直線于點,當時,根據(jù)橢圓的定義,即可求出軌跡的方程;(2)當時,軌跡必為橢圓方程,設,分別過E取兩垂直與坐標軸的兩條弦CD,,根據(jù)求出E若存在必為定值為6.再進行證明.存在性問題,先猜后證是關鍵.再設設過點E的直線方程,代入橢圓方程,消去,設,,利用一元二次方程的根與系數(shù)的關系,求得為定值6.
(1)由題意,,所以,
所以軌跡是以、為焦點,以為長軸的橢圓,
其方程為.(4分)
(2)由(1)當時,曲線C為,
設,分別過E取兩垂直與坐標軸的兩條弦CD,,
則,即
解得,所以E若存在必為定值為6. (6分)
下證滿足題意.
設過點E的直線方程為,代入C中得:
,設,
則 (8分)
(13分)
同理可得E也滿足題意.
綜上得定點為E,定值為(14分)
考點:直線和圓的方程的應用,圓錐曲線的定義、性質與方程,軌跡方程的問題.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓經過點,且兩焦點與短軸的兩個端點的連線構成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點,若線段的垂直平分線經過點,求
(為原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點的直線與橢圓交于兩點(不是橢圓的頂點).點在橢圓上,且,直線與軸、軸分別交于兩點.
(i)設直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
(ii)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓()的左、右焦點為,右頂點為,上頂點為.已知.
(1)求橢圓的離心率;
(2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經過點,經過原點的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設有雙曲線,F1,F2是其兩個焦點,點M在雙曲線上.
(1)若∠F1MF2=90°,求△F1MF2的面積;
(2)若∠F1MF2=60°,△F1MF2的面積是多少?若∠F1MF2=120°,△F1MF2的面積又是多少?
(3)觀察以上計算結果,你能看出隨∠F1MF2的變化,△F1MF2的面積將怎樣變化嗎?試證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右頂點分別為,離心率.
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的焦點在x軸上,左右頂點分別為,上頂點為B,拋物線分別以A,B為焦點,其頂點均為坐標原點O,與相交于 直線上一點P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點,求的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•陜西)設橢圓C:過點(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應的圓Q的標準方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com