設G,Q分別為△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.

(Ⅰ)求點C的軌跡E的方程;

(Ⅱ)若l0是過點P(1,0)且垂直于x軸的直線,是否存在直線l,使得l與曲線E交于兩個不同的點M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范圍;若不存在,請說明理由.

答案:
解析:

  解:(I)設,則,因為,可得;又由

  可得點的軌跡的方程為.  6分(沒有扣1分)

  (II)假設存在直線,代入并整理得

  ,  8分

  設,則  10分

  又

  ,解得  13分

  特別地,若,代入得,,此方程無解,即

  綜上,的斜率的取值范圍是.  14分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設G,Q分別為△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求點C的軌跡E的方程;
(II)若l0是過點P(1,0)且垂直于x軸的直線,是否存在直線l,使得l與曲線E交于兩個不同的點M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),GM∥AB.
(1)求點C的軌跡方程;
(2)設點C的軌跡為曲線E,是否存在直線l,使l過點(0.1)并與曲線E交于P、Q兩點,且滿足
OP
OQ
=-2
?若存在,求出直線l的方程,若不存在,說明理由.
注:三角形的重心的概念和性質(zhì)如下:設△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),GM∥AB.
(1)求點C的軌跡方程;
(2)設點C的軌跡為曲線E,是否存在直線l,使l過點(0.1)并與曲線E交于P、Q兩點,且滿足數(shù)學公式?若存在,求出直線l的方程,若不存在,說明理由.
注:三角形的重心的概念和性質(zhì)如下:設△ABC的重心,且有數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2007年江蘇省鹽城市濱海中學高考數(shù)學最后一模試卷(解析版) 題型:解答題

設G,Q分別為△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求點C的軌跡E的方程;
(II)若l是過點P(1,0)且垂直于x軸的直線,是否存在直線l,使得l與曲線E交于兩個不同的點M,N,且MN恰被l平分?若存在,求出l的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案