(本小題滿分14分)如圖,橢圓的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設動直線與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標平面內是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標;若不存在,說明理由.
(Ⅰ);(Ⅱ)證明見解析.

試題分析:(Ⅰ)∵過的直線交橢圓于兩點,且△的周長為
,∴,∴
∴橢圓的方程為                                          ……4分
(Ⅱ)由,消元可得:       ……5分
∵動直線與橢圓有且只有一個公共點
,     
此時,
                                      ……8分
,此時,
為直徑的圓為,交軸于點,
,此時
為直徑的圓為軸于點,
故若滿足條件的點存在,即,                                ……12分
證明如下
,

故以為直徑的圓恒過軸上的定點.                          ……14分
點評:遇到直線與橢圓的位置關系的題目,往往免不了要把直線方程和橢圓方程聯(lián)立方程組,消去一個未知數(shù),然后利用根與系數(shù)的關系進行解答,有時也和向量結合起來解決問題,運算量比較大,難度中等偏上,但是是高考中?嫉念}目,必須加以重視.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果方程表示焦點在軸上的橢圓,則的取值范圍是  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)在平面直角坐標系中,已知橢圓)的左焦點為,且點上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經過橢圓的左焦點.求直線與該橢圓相交的弦長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓=1的右焦點到直線y=x的距離是                    (  )
A.     B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的右焦點為圓心作一個圓,使此圓過橢圓中心并交橢圓于點M,N,
若過橢圓左焦點的直線MF1是圓的切線,則橢圓的離心率為                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

焦距為,離心率,焦點在軸上的橢圓標準方程是       (   )
               
            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓=1的離心率 e =, 則k的值是             

查看答案和解析>>

同步練習冊答案