精英家教網 > 高中數學 > 題目詳情

【題目】狄利克雷是19世紀德國著名的數學家,他定義了一個“奇怪的函數”,下列關于狄利克雷函數的敘述正確的有:______.

的定義域為,值域是 具有奇偶性,且是偶函數

是周期函數,但它沒有最小正周期 ④對任意的,

【答案】①②③④

【解析】

根據實數分為有理數和無理數以及函數值域的定義,可知結論①正確;由偶函數定義可證明結論②正確;由函數周期性定義可判斷結論③正確;代入,可判斷④正確.

因為中自變量的取值為有理數和無理數,所以的定義域為

當自變量為有理數時,函數值為1

當自變量為無理數時,函數值為0,則值域為,故①正確;

,是偶函數,故②正確;

為有理數時,,所以任何一個有理數都是的周期,即是周期函數,且沒有最小正周期,故③正確;

對任意的,等于10,不管是1還是0都為有理數,則,故④正確;

故答案為:①②③④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下圖是某地區(qū)2009年至2018年芯片產業(yè)投資額 (單位:億元)的散點圖,為了預測該地區(qū)2019年的芯片產業(yè)投資額,建立了與時間變量的四個線性回歸模型.根據2009年至2018年的數據建立模型①;根據2010年至2017年的數據建立模型②;根據2011年至2016年的數據建立模型③;根據2014年至2018年的數據建立模型④.則預測值更可靠的模型是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖(1),等腰梯形,,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點, 如圖(2).

1)求證:平面平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點O為坐標原點,橢圓C:(a>b>0)的左、右焦點分別為F1,F2,離心率為,點I,J分別是橢圓C的右頂點、上頂點,IOJ的邊IJ上的中線長為

(1)求橢圓C的標準方程;

(2)過點H(-2,0)的直線交橢圓C于A,B兩點,若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中,,,,,,點上,且,將沿折起,使得平面平面(如圖),中點.

1)求證:平面;

2)求直線與平面所成的角的正弦值.

3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1BC1上,且AM=AB1,BN=BC1,則下列結論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,

正確命題的個數是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某連鎖分店銷售某種商品,該商品每件的進價為元,預計當每件商品售價為元時,一年的銷售量(單位:萬件)該分店全年需向總店繳納宣傳費、保管費共計萬元.

1)求該連鎖分店一年的利潤與每件商品售價的函數關系式;

2)求當每件商品售價為多少元時,該連鎖店一年的利潤最大,并求其最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從拋物線上任意一點Px軸作垂線段,垂足為Q,點M是線段上的一點,且滿足

(1)求點M的軌跡C的方程;

(2)設直線與軌跡c交于兩點,TC上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓與橢圓相交于點M0,1),N0,-1),且橢圓的離心率為.

1)求的值和橢圓C的方程;

2)過點M的直線交圓O和橢圓C分別于A,B兩點.

①若,求直線的方程;

②設直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

同步練習冊答案