【題目】已知圓, 在拋物線上,圓過原點且與的準(zhǔn)線相切.

(Ⅰ) 求的方程;

(Ⅱ) 點,點(與不重合)在直線上運(yùn)動,過點的兩條切線,切點分別為, .求證: (其中為坐標(biāo)原點).

【答案】(I);(Ⅱ) 見解析.

【解析】試題分析:(I)原點在圓上,拋物線準(zhǔn)線與圓相切,可得三者之間的關(guān)系,進(jìn)而求出的方程;(Ⅱ) 設(shè) , ,利用導(dǎo)數(shù)求得兩切線方程,利用根與系數(shù)關(guān)系可證,即證兩角相等.

試題解析:(I)解法一:因為圓的圓心在拋物線上且與拋物線的準(zhǔn)線相切,且圓半徑為,

因為圓過原點,所以,所以,

,所以,

因為,所以,所以拋物線方程

解法二:因為圓的圓心在拋物線上且與拋物線的準(zhǔn)線相切,由拋物線的定義,

必過拋物線的焦點,

又圓過原點,所以

又圓的半徑為3,所以,又,

,得,所以.所以拋物線方程

解法三:因為圓與拋物線準(zhǔn)線相切,所以

且圓過又圓過原點,故,可得,

解得,所以拋物線方程

(Ⅱ) 解法一:設(shè), , 方程為,所以, 5分

求得拋物線在點處的切線的斜率,所以切線方程為: ,

,化簡得,

又因過點,故可得,

,同理可得

所以為方程的兩根,所以 ,

因為,所以

化簡

所以

解法二:依題意設(shè)點,設(shè)過點的切線為,所以,

所以,所以,即

不妨設(shè)切線的斜率為,點 ,

所以 ,又,所以,所以,

所以, ,即點,同理點

因為,所以,同理,

所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)

纖維長度

甲地(根數(shù))

3

4

4

5

4

乙地(根數(shù))

1

1

2

10

6

(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

甲地

乙地

總計

長纖維

短纖維

總計

附:(1)

(2)臨界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< ,
(1)求tanα的值;
(2)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長沙市物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進(jìn)行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:

定價

10

20

30

40

50

60

年銷量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù): ,

(1)根據(jù)散點圖判斷, 哪一對具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說明理由)?

(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價為多少元/ 時,年銷售額的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C方程為 (a>b>0),左、右焦點分別是F1 , F2 , 若橢圓C上的點P(1, )到F1 , F2的距離和等于4. (Ⅰ)寫出橢圓C的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點Q是橢圓C的動點,求線段F1Q中點T的軌跡方程;
(Ⅲ)直線l過定點M(0,2),且與橢圓C交于不同的兩點A,B,若∠AOB為銳角(O為坐標(biāo)原點),求直線l的斜率k0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), )分別交, 兩點,當(dāng)取何值時, 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內(nèi)移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標(biāo)原點如圖所示建立平面直角坐標(biāo)系.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)動直線交曲線兩點,且以為直徑的圓經(jīng)過點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a1=3,an=2an1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*
(1)t=0,m=0時,求證: 是等差數(shù)列;
(2)t=﹣1,m= 是等比數(shù)列;
(3)t=0,m=1時,求數(shù)列{an}的通項公式和前n項和.

查看答案和解析>>

同步練習(xí)冊答案