14、若函數(shù)f(x)=a0+a1x+a2x2+a3x3+…+a2001x2001是奇函數(shù),則a0+a2+a4+…+a2000=
0
分析:利用奇函數(shù)的定義得到等式恒成立,化簡恒成立的等式,得到系數(shù)和為0.
解答:解:∵f(x)為奇函數(shù)
∴f(-x)=-f(x)恒成立
∴a0-a1x+a2x2-a3x3+…-a2001x2001=-(a0+a1x+a2x2+a3x3+…+a2001x2001
∴a0+a2x2+…+2000x2000=0恒成立
所以a0+a2+a4+…+a2000=0
故答案為0
點(diǎn)評:解決函數(shù)的奇偶性問題,常利用奇偶性的定義,得到恒成立的方程進(jìn)行解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個命題:
①x,y∈R,若x2+y2=0,則x=0或y=0的否命題是假命題;
②函數(shù)y=3x+3-x(x<0)的最小值為2;
③若函數(shù)f(x)=x3+ax2+2的圖象關(guān)于點(diǎn)(1,0)對稱,則a的值為-3;
④若f(x+2)+
1f(x)
=0,則函數(shù)y=f(x)是以4為周期的周期函數(shù);
⑤若(1+x)10=a0+a1x+a2x2+…+a10x10,則a0+a1+2a2+3a3+…+10a10=10×29其中真命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在D上的函數(shù),若對D中的任意兩數(shù)x1,x2(x1≠x2),恒有f(
1
3
x1+
2
3
x2
)<
1
3
f(x1)+
2
3
f(x2)
,則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f(x)=x2是否為定義域上的C函數(shù),并說明理由;
(Ⅱ)若函數(shù)f(x)是R上的奇函數(shù),試證明f(x)不是R上的C函數(shù);
(Ⅲ)設(shè)f(x)是定義在D上的函數(shù),若對任何實(shí)數(shù)a∈[0,1]以及D中的任意兩數(shù)x1,x2(x1≠x2),恒有f(ax1+(1-a)x2)≤af(x1)+(1-a)f(x2),則稱f(x)為定義在D 上的π函數(shù).已知f(x)是R上的m函數(shù).m是給定的正整數(shù),設(shè)an=f(n),n=0,1,2,…m,且a0=0,am=2m,記Sf=a1+a2+…+am.對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若函數(shù)f(x)=a0+a1x+a2x2+a3x3+…+a2001x2001是奇函數(shù),則a0+a2+a4+…+a2000=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=a0+a1x+a2x2+a3x3+…+a2001x2001是奇函數(shù),則a0+a2+a4+…+a2000=______.

查看答案和解析>>

同步練習(xí)冊答案