【題目】已知函數(shù).

1)若,求函數(shù)的單調(diào)遞增區(qū)間;

2)當(dāng)時(shí),若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,(2)

【解析】

1)化簡得到,畫出函數(shù)圖像得到單數(shù)單調(diào)區(qū)間.

2)化簡得到,討論,

三種情況,計(jì)算得到答案.

1)當(dāng)時(shí),.

畫出函數(shù)圖像:

由函數(shù)的圖像可知,函數(shù)的單調(diào)遞增區(qū)間為,.

2)不等式化為,

即:,對任意的恒成立.

因?yàn)?/span>,所以分如下情況討論:

時(shí),不等式化為恒成立.

恒成立.

上單調(diào)遞增,

只需,∴.

②當(dāng)時(shí),不等式化為恒成立,

恒成立,

由①知,∴上單調(diào)遞減,

∴只需,∴,

,∴.

③當(dāng)時(shí),不等式化為恒成立,

恒成立,

上單調(diào)遞增,

∴只需,∴,

由②得:,

綜上所述,的取值范圍是:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過500.

1)設(shè)一次訂購量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)的表達(dá)式;

2)當(dāng)銷售商一次訂購450件服裝時(shí),該服裝廠獲得的利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng) 時(shí),討論 的極值情況;

(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案.如圖是一個(gè)數(shù)表,第1行依次寫著從小到大的正整數(shù),然后把每行相鄰的兩個(gè)數(shù)的和寫在這兩數(shù)正中間的下方,得到下一行,數(shù)表從上到下與從左到右均為無限項(xiàng),求滿足如下條件的最小四位整數(shù):第2017行的第項(xiàng)為2的正整數(shù)冪.已知,那么該款軟件的激活碼是( )

A. 1040 B. 1045 C. 1060 D. 1065

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點(diǎn),的中點(diǎn),,,.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3xyf(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.

(1)求使直線lyf(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線lyf(x)相切且切點(diǎn)異于點(diǎn)P的直線方程yg(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù).

1)求實(shí)數(shù)a的值;

2)用定義證明函數(shù)R上為單調(diào)遞增函數(shù).若當(dāng)時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下述三個(gè)事件按順序分別對應(yīng)三個(gè)圖象,正確的順序是(

1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是返回家里找到了作業(yè)本再上學(xué);(2)我騎著車一路勻速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;(3)我出發(fā)后,心情輕松,緩慢行進(jìn),后來為了趕時(shí)間開始加速.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x>0時(shí),(x-2)exx+2>0.

(2)證明:當(dāng)a[0,1) 時(shí),函數(shù)g(x)= (x>0) 有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

同步練習(xí)冊答案