我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿(mǎn)足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)
成立,則稱(chēng)函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱(chēng)上凸).類(lèi)比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:
an+an+2
2
an+1
成立,則稱(chēng)數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱(chēng)上凸數(shù)列).現(xiàn)有數(shù)列{an}滿(mǎn)足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為
 
分析:
an+an+2
2
an+1
?
an+2-an+1
n+2-n-1
an+1-an
n+1-n
?a5≥13…(1),在|an-bn|≤20,bn=n2-6n+10中,令n=5?-15≤a5≤25…(2);(1)、(2)聯(lián)立能得到第五項(xiàng)a5的取值范圍.
解答:解:∵
an+an+2
2
an+1
,∴
an+2-an+1
n+2-n-1
an+1-an
n+1-n

a10-a1
10-1
a5-a1
5-1
,把a(bǔ)1=1,a10=28代入,得a5≥13…(1).
在|an-bn|≤20,bn=n2-6n+10中,令n=5,得b5=25-30+10=5,
∴-20≤a5-b5≤20,∴-15≤a5≤25…(2).
(1)、(2)聯(lián)立得13≤a≤25.
答案:[13,25].
點(diǎn)評(píng):本題具有一定的難度,解題時(shí)要注意公式的合理轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿(mǎn)足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式數(shù)學(xué)公式成立,則稱(chēng)函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱(chēng)上凸).類(lèi)比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:數(shù)學(xué)公式成立,則稱(chēng)數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱(chēng)上凸數(shù)列).現(xiàn)有數(shù)列{an}滿(mǎn)足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省宿遷中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿(mǎn)足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式成立,則稱(chēng)函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱(chēng)上凸).類(lèi)比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:成立,則稱(chēng)數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱(chēng)上凸數(shù)列).現(xiàn)有數(shù)列{an}滿(mǎn)足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省南通市如東縣掘港中學(xué)高考數(shù)學(xué)一模試卷(解析版) 題型:填空題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿(mǎn)足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式成立,則稱(chēng)函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱(chēng)上凸).類(lèi)比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:成立,則稱(chēng)數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱(chēng)上凸數(shù)列).現(xiàn)有數(shù)列{an}滿(mǎn)足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿(mǎn)足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式成立,則稱(chēng)函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱(chēng)上凸).類(lèi)比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:成立,則稱(chēng)數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱(chēng)上凸數(shù)列).現(xiàn)有數(shù)列{an}滿(mǎn)足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案