正方形ABCD,沿對(duì)角線BD折成直二面角后不會(huì)成立的結(jié)論是( 。
A.AC⊥BD
B.△ADC為等邊三角形
C.AB、CD所成角為60°
D.AB與平面BCD所成角為60°
連接AC與BD交于O點(diǎn),對(duì)折后如圖所示,令OC=1
則O(0,0,0),A(1,0,0),B(0,1,0),
C(0,0,1),D(0,-1,0)
AC
=(-1,0,1),
BD
=(0,-2,0),
AC
BD
=0,∴AC⊥BD,故A正確;
|
AC
|
=|
AD
|
=|
CD
|
=2,∴△ADC為等邊三角形,故B正確;
AB
=(-1,1,0),
CD
=(0,-1,-1),
∴|cos<
AB
,
CD
>|=|
-1
2
2
|=
1
2
,∴AB與CD所成角為60°,故C正確;
OA
為平面BCD的一個(gè)法向量,根據(jù)正方形的性質(zhì),得AB與平面BCD所成角為45°,故D錯(cuò)誤.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a>0且a≠1,命題P:函數(shù)y=loga(x+1)在區(qū)間(0,+∞)上為減函數(shù);命題Q:曲線y=x2+(2a-3)x+1與x軸相交于不同的兩點(diǎn).若P為真,Q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若m≥a,則方程x2+x-m=0有解的逆命題為真命題,則a的取值范圍為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某次考試有70000名學(xué)生參加,為了了解這70000名考生的數(shù)學(xué)成績(jī),從中抽取1000名考生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,在這個(gè)問(wèn)題中,有以下四種說(shuō)法:
(1)1000名考生是總體的一個(gè)樣本;
(2)1000名考生數(shù)學(xué)成績(jī)的平均數(shù)是總體平均數(shù);
(3)70000名考生是總體;
(4)樣本容量是1000.其中正確的說(shuō)法有( 。
A.1種B.2種C.3種D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若命題“p∧q”為假,且?p為假,則(  )
A.“p∨q”為假B.q為假C.p為假D.q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知α,β,γ是平面,l,m,n是直線,則下列命題正確的是( 。
A.若α⊥β,β⊥γ,則αγB.若m⊥α,β⊥α,則mβ
C.若l⊥m,l⊥n,則mnD.若l⊥α,m⊥α,則lm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是( 。
A.有一個(gè)面是多邊形,其余各面是三角形的多面體是棱錐
B.有兩個(gè)面互相平行,其余各面均為梯形的多面體是棱臺(tái)
C.有兩個(gè)面互相平行,其余各面均為平行四邊形的多面體是棱柱
D.棱柱的兩個(gè)底面互相平行,側(cè)面均為平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中為真命題的是( 。
A.命題“若x>y,則x>|y|”的逆命題
B.命題“x>1,則x2>1”的否命題
C.命題“若x=1,則x2+x-2=0”的否命題
D.命題“若x2>0,則x>1”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是奇函數(shù);
③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號(hào)是( 。
A.②B.①③C.②③D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案