一組數(shù)據(jù)用莖葉圖表示如圖,則這組數(shù)據(jù)的中位數(shù)是( 。
A、23B、25C、36D、34
考點(diǎn):莖葉圖
專題:概率與統(tǒng)計(jì)
分析:根據(jù)莖葉圖中的數(shù)據(jù),把該組數(shù)據(jù)按大小順序排列,即可得出中位數(shù).
解答: 解:根據(jù)莖葉圖中的數(shù)據(jù),把這組數(shù)據(jù)按從小到大的順序排列如下;
14,23,25,34,35,36,47;
∴這組數(shù)的中位數(shù)是34.
故選:D.
點(diǎn)評(píng):本題考查了利用莖葉圖求數(shù)據(jù)的中位數(shù)問題,解題是關(guān)鍵是把數(shù)據(jù)按大小順序進(jìn)行排列,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),若存在實(shí)常數(shù)A,B,C,對(duì)于任意正整數(shù)n,都有an+Sn=An2+Bn+C成立.
(1)已知A=B=0,a1≠0,求證:數(shù)列{an}(n∈N*)是等比數(shù)列;
(2)已知數(shù)列{an}(n∈N*)是等差數(shù)列,求證:3A+C=B;
(3)已知a1=1,B>0且B≠1,B+C=2.設(shè)λ為實(shí)數(shù),若?n∈N*,
an
an+1
<λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的準(zhǔn)線與直線x+y-3=0以及x軸圍成三角形面積為8,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x不等式|2x-1|-|x-2|<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosθ,sinθ),
b
=(cos2θ,sin2θ),
c
=(0,1).
(Ⅰ)若
a
b
,求角θ;
(Ⅱ)設(shè)f(θ)=
a
•(
b
-
c
),當(dāng)θ∈(0,
π
2
)時(shí),求f(θ)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為豐富課余生活,某班開展了一次有獎(jiǎng)知識(shí)競(jìng)賽,在競(jìng)賽后把成績(jī)(滿分為100分,分?jǐn)?shù)均為整數(shù))進(jìn)行統(tǒng)計(jì),制成該頻率分布表:
序號(hào)組(段)頻數(shù)(人數(shù))頻率
1[0,60)a0.1
2[60,75)150.3
3[75,90)25b
4[90,]cd
合計(jì)501
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若得分在[90,100]之間的有機(jī)會(huì)得一等獎(jiǎng),已知其中男女比例為2:3,如果一等獎(jiǎng)只有兩名,寫出所有可能的結(jié)果,并求獲得一等獎(jiǎng)的全部為女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)結(jié)論正確的是
 
.(填序號(hào))
①“x≠0”是“x+|x|>0”的必要不充分條件;
②已知a、b∈R,則“|a+b|=|a|+|b|”的充要條件是ab>0;
③“a>0,且△=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要條件;
④“x≠1”是“x2≠1”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,若PD=4,DC=DB=3,PB=PC=5,AD⊥DB
(1)求證:AD⊥PB;
(2)點(diǎn)E,F(xiàn),G分別是AB,AP,PC的中點(diǎn),過E,F(xiàn),G的平面交BC于H,求線段GH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中an>0,且a1+a2+a3+…+a8=40,則a4•a5的最大值是(  )
A、5B、10
C、25D、AB=4,50

查看答案和解析>>

同步練習(xí)冊(cè)答案