【題目】如圖,幾何體AMDCNB是由兩個完全相同的四棱錐構成的幾何體,這兩個四棱錐的底面ABCD為正方形,,平面平面ABCD.
(1)證明:平面平面MDC.
(2)若,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)根據題意由面面垂直的性質可得平面MAD,即可證出,又,利用線面垂直的判定定理即可證出.
(2)以N為坐標原點,分別以NC,NB所在的直線為x,y軸,過N作與平面NBC垂直的直線為z軸,建立空間直角坐標系, 設,求出平面NAD的一個法向量以及平面MAD的一個法向量,利用空間向量的數量積即可求解.
(1)證明:因為平面平面ABCD,且相交于AD,又,
所以平面MAD
所以.
又,,
所以平面MDC.
因為平面MAB,所以平面平面MDC.
(2)解:以N為坐標原點,分別以NC,NB所在的直線為x,y軸,
過N作與平面NBC垂直的直線為z軸,建立空間直角坐標系,如圖所示.
設,則,,,
所以,.
設平面NAD的一個法向量,則,
令,得.
又平面MAD的一個法向量
所以.
由圖可知二面角為鈍角,
所以所求二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】已知圓: 經過橢圓: 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓于, 兩點,且().
(1)求橢圓的方程;
(2)當三角形的面積取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數為0.01;固定部分為元(>0).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統(tǒng)計數據如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據上表說明,能否有的把握認為,收看開幕式與性別有關?
(Ⅱ)現從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學生各選取多少人?
(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是0.7.現采用隨機模擬的方法估計該運動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數值的隨機數,指定0,1,2表示沒有擊中目標,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數為一組,代表射擊4次的結果.經隨機模擬產生了20組隨機數:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
據此估計,該射擊運動員射擊4次至少擊中2次的概率為( )
A. 0.8 B. 0.85 C. 0.9 D. 0.95
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P是圓上一動點,x軸于點D.記滿足的動點M的軌跡為Γ.
(1)求軌跡Γ的方程;
(2)已知直線與軌跡Γ交于不同兩點A,B,點G是線段AB中點,射線OG交軌跡Γ于點Q,且.
①證明:
②求△AOB的面積S(λ)的解析式,并計算S(λ)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮.某公司隨即抽取人對共享產品是否對日常生活有益進行了問卷調查,并對參與調查的人中的性別以及意見進行了分類,得到的數據如下表所示:
男 | 女 | 總計 | |
認為共享產品對生活有益 | |||
認為共享產品對生活無益 | |||
總計 |
(1)根據表中的數據,能否在犯錯誤的概率不超過的前提下,認為對共享產品的態(tài)度與性別有關系?
(2)現按照分層抽樣從認為共享產品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com