已知等差數(shù)列的前項(xiàng)和為,公差,且,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1公比為3 的等比數(shù)列,求數(shù)列項(xiàng)和.

(1);(2)

解析試題分析:(1)由成等比數(shù)列求出等差數(shù)列的兩個(gè)基本量及公差從而得數(shù)列的通項(xiàng)公式;(2)數(shù)列是一個(gè)等差數(shù)列與一個(gè)等比較數(shù)列之積,用錯(cuò)位相減法求其和。
解題時(shí)注意不要混淆公式。
試題解析:(1)依題得

解得,
,即             6分
(2)
           ①
    ②
兩式相減得:

                        12分
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.等比數(shù)列的通項(xiàng)公式;3.數(shù)列的前項(xiàng)和公式;4.錯(cuò)位相消法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,若,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)是否存在,使得,若存在,求出所有滿足條件的;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如果項(xiàng)數(shù)均為的兩個(gè)數(shù)列滿足且集合,則稱(chēng)數(shù)列是一對(duì)“項(xiàng)相關(guān)數(shù)列”.
(Ⅰ)設(shè)是一對(duì)“4項(xiàng)相關(guān)數(shù)列”,求的值,并寫(xiě)出一對(duì)“項(xiàng)相
關(guān)數(shù)列”;
(Ⅱ)是否存在“項(xiàng)相關(guān)數(shù)列”?若存在,試寫(xiě)出一對(duì);若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)對(duì)于確定的,若存在“項(xiàng)相關(guān)數(shù)列”,試證明符合條件的“項(xiàng)相關(guān)數(shù)列”有偶數(shù)對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列及其前項(xiàng)和滿足: ().
(1)證明:設(shè),是等差數(shù)列;
(2)求;
(3)判斷數(shù)列是否存在最大或最小項(xiàng),若有則求出來(lái),若沒(méi)有請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若{an}又是等比數(shù)列,令bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,數(shù)列的前n項(xiàng)和為,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令求數(shù)列前n項(xiàng)和的公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案