已知△ABC的兩個(gè)頂點(diǎn)A(3,7),B(-2,5),若AC、BC的中點(diǎn)都在坐標(biāo)軸上,則C點(diǎn)的坐標(biāo)是( 。
分析:設(shè)C(x,y),分類:AC的中點(diǎn)在x軸上,BC中點(diǎn)在y軸上,AC中點(diǎn)在y軸上,BC中點(diǎn)在x軸上,分別有中點(diǎn)公式解之可得.
解答:解:設(shè)C(x,y),顯然AC、BC的中點(diǎn)不同在一條坐標(biāo)軸上.
若AC的中點(diǎn)在x軸上,BC中點(diǎn)在y軸上,則有y+7=0,-2+x=0,
解之可得x=2,y=-7,即C(2,-7);
若AC中點(diǎn)在y軸上,BC中點(diǎn)在x軸上,則有3+x=0,5+y=0,
解之可得x=-3,y=-5,即C(-3,-5).
故選D
點(diǎn)評(píng):本題考查中點(diǎn)坐標(biāo)公式,涉及分類討論的思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別是(-5,0)、(5,0),邊AC、BC所在直線的斜率之積為-
12
,求頂點(diǎn)C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC的兩個(gè)頂點(diǎn)A(-10,2),B(6,4),垂心是H(5,2),求頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A(-5,0),B(5,0),△ABC的第三個(gè)頂點(diǎn)在一條雙曲線
x2
9
-
y2
16
=1
(y≠0)上,則△ABC的內(nèi)心的軌跡所在圖象為( 。
A、兩條直線B、橢圓
C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A、B分別是橢圓
x2
25
+
y2
9
=1 的左、右焦點(diǎn),三個(gè)內(nèi)角A、B、C滿足sinA-sinB=
1
2
sinC,則頂點(diǎn)C的軌跡方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(0,-1),(0,1),且AC,BC所在直線的斜率之積等于m(m≠0).
(1)求頂點(diǎn)C的軌跡E的方程,并判斷軌跡E為何種圓錐曲線;
(2)當(dāng)m=-
12
時(shí),過(guò)點(diǎn)F(1,0)的直線l交曲線E于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為Q(M,Q不重合) 試問(wèn):直線MQ與x軸的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案