設(shè)a>0,不等式-c<ax+b<c的解集是{x|-2<x<1},則a:b:c=( 。
A、1:2:3
B、2:1:3
C、3:1:2
D、3:2:1
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)一元一次不等式的解法進行求解即可.
解答: 解:∵不等式-c<ax+b<c的解為-
b+c
a
<x<
c-b
a
,
-
b+c
a
=-2且
c-b
a
=1,
解得b=
a
2
,c=
3
2
a
,
則a:b:c=a:
a
2
3
2
a
=2:1:3,
故選:B.
點評:本題主要考查一元一次不等式的解法,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x+
π
3
)-
3
cos2
x
2
+
3
2

(1)若f(a+
π
4
)=-
3
4
,
4
≤a≤
4
,求a的值;
(2)將含f(x)的圖象上各點的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的圖象,若方程g(x)=m在區(qū)間[-
π
6
,
π
3
]上只有一個實數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)方程2x+x-3=0的根為α,方程log2x+x-3=0的根為β,則α+β的值是(  )
A、1B、2C、3D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
3
sinx+3cosx.若x1•x2>0,且f(x1)+f(x2)=0,則|x1+x2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
(sinx+cosx)2-cos2x的最小正周期和相位分別是(  )
A、π,2x-
π
3
B、π,2x-
π
6
C、2π,-
π
3
D、2π,-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c與x軸的兩個交點為(-2,0)(2,0)則不等式ax2+bx+c>0的解集為(  )
A、(-2,2)
B、(-∞,-2)∪(2,+∞)
C、{x|x≠±2}
D、與a符號有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖是總體的一樣本頻率分布直方圖,且在[15,18)內(nèi)頻數(shù)為8.
(1)求樣本容量;
(2)若在[12,15)內(nèi)小矩形面積為0.06,求在[12,15)內(nèi)頻數(shù);
(3)在(2)的條件下,求樣本在[18,33)內(nèi)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸入m=4060,n=1986,則輸出的實數(shù)m的值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,若b=1,B=
π
3
,
(1)求a+c的最大值;
(2)求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案