精英家教網 > 高中數學 > 題目詳情

【題目】己知函數f(x)是定義在R上的偶函數,f(x+1)為奇函數,f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區(qū)間(8,9)內滿足方f(x)程f(x)+2=f( )的實數x為(
A.
B.
C.
D.

【答案】D
【解析】解:∵f(x+1)為奇函數,即f(x+1)=﹣f(﹣x+1),即f(x)=﹣f(2﹣x). 當x∈(1,2)時,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).
又f(x)為偶函數,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),
即f(x)=﹣f(x+2)=f(x+4),故 f(x)是以4為周期的函數.
∵f(1)=0,∴當8<x≤9時,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).
由f( )=﹣1,f(x)+2=f( )可化為log2(x﹣8)+2=﹣1,得x=
故選:D.
由f(x+1)為奇函數,可得f(x)=﹣f(2﹣x).由f(x)為偶函數可得f(x)=f(x+4),故 f(x)是以4為周期的函數.當8<x≤9時,求得f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+2=﹣1得x的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】12分)已知等差數列{an}中,a1=1,a3=﹣3

)求數列{an}的通項公式;

)若數列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的三個內角A,B,C的對邊分別是a,b,c,若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 . (Ⅰ)求角A的大;
(Ⅱ)設函數f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0),已知其圖象的相鄰兩條對稱軸間的距離為 ,現將y=f(x)的圖象上各點向左平移 個單位,再將所得圖象上各點的橫坐標伸長為原來的2倍,得到函數y=g(x)的圖象,求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,的值域是,則實數的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;

(3)如果圓C上存在E,F兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,鄭州經濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內的井字形快速交通網,還是輻射全國的米字形高鐵路網,鄭州的交通優(yōu)勢在同級別的城市內無能出其右.為了調查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調查,并將滿意程度以分數的形式統計成如下的頻率分布直方圖,其中

(I)求的值;

(Ⅱ)求被調查的市民的滿意程度的平均數,眾數,中位數;

(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點M的直角坐標為(1,0),若直線l的極坐標方程為 ρcos(θ+ )﹣1=0,曲線C的參數方程是 (t為參數).
(1)求直線l和曲線C的普通方程;
(2)設直線l與曲線C交于A,B兩點,求 +

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現有設備下每日生產總成本(單位:萬元)與日產量(單位:噸)之間的函數關系式為,現為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設備,每噸產品除塵費用為萬元,除塵后當日產量時,總成本

1)求的值;

2)若每噸產品出廠價為48萬元,試求除塵后日產量為多少時,每噸產品的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為迎接夏季旅游旺季的到來,少林寺單獨設置了一個專門安排游客住宿的客棧,寺廟的工作人員發(fā)現為游客準備的一些食物有些月份剩余不少,浪費很嚴重,為了控制經營成本,減少浪費,就想適時調整投入.為此他們統計每個月入住的游客人數,發(fā)現每年各個月份來客棧入住的游客人數會發(fā)生周期性的變化,并且有以下規(guī)律:

①每年相同的月份,入住客棧的游客人數基本相同;

②入住客棧的游客人數在2月份最少,在8月份最多,相差約400人;

③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達到最多.

(1)試用一個正弦型三角函數描述一年中入住客棧的游客人數y與月x份之間的關系;

(2)請問哪幾個月份要準備400份以上的食物?

查看答案和解析>>

同步練習冊答案