(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積.
(2)過(guò)直角坐標(biāo)平面中的拋物線的焦點(diǎn)作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn). 用表示A,B之間的距離;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,經(jīng)過(guò)點(diǎn)的動(dòng)直線交拋物線于點(diǎn),且.
(1)求拋物線的方程;
(2)若(為坐標(biāo)原點(diǎn)),且點(diǎn)在拋物線上,求直線傾斜角;
(3)若點(diǎn)是拋物線的準(zhǔn)線上的一點(diǎn),直線的斜率分別為.求證:
當(dāng)為定值時(shí),也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直角坐標(biāo)平面上,為原點(diǎn),為動(dòng)點(diǎn),,. 過(guò)點(diǎn)作軸于,過(guò)作軸于點(diǎn),. 記點(diǎn)的軌跡為曲線,
點(diǎn)、,過(guò)點(diǎn)作直線交曲線于兩個(gè)不同的點(diǎn)、(點(diǎn)在與之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過(guò)點(diǎn)且方向向量為的直線交橢圓于兩點(diǎn),交軸于點(diǎn),且.
(1)求直線的方程;
(2)求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知圓的圓心為原點(diǎn),且與直線相切。
(1)求圓的方程;
(2)點(diǎn)在直線上,過(guò)點(diǎn)引圓的兩條切線,切點(diǎn)為,求證:直線恒過(guò)定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知橢圓,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上,,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com