【題目】今年的西部決賽勇士和火箭共進行了七場比賽,經(jīng)歷了殘酷的“搶七”比賽,兩隊的當(dāng)家球星庫里和杜蘭特七場比賽的每場比賽的得分如下表:

第一場

第二場

第三場

第四場

第五場

第六場

第七場

庫里

26

28

24

22

31

29

36

杜蘭特

26

29

33

26

40

29

27

(1)繪制兩人得分的莖葉圖;

(2)分析并比較兩位球星的七場比賽的平均得分及得分的穩(wěn)定程度.

【答案】(1)莖葉圖見解析

(2)這七場比賽庫里的平均得分低于杜蘭特,但庫里的得分更穩(wěn)定一些

【解析】

1)根據(jù)得分繪制莖葉圖即可.

2)計算兩人的平均分和方差,比較即可得出結(jié)論.

(1)如圖

(2)庫里的平均得分分,

方差.

杜蘭特的平均得分分,

方差.

,則這七場比賽庫里的平均得分低于杜蘭特,但庫里的得分更穩(wěn)定一些.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足:存在正整數(shù),對任意的,使得成立,則稱階穩(wěn)增數(shù)列.

1)若由正整數(shù)構(gòu)成的數(shù)列階穩(wěn)增數(shù)列,且對任意,數(shù)列中恰有,求的值;

2)設(shè)等比數(shù)列階穩(wěn)增數(shù)列且首項大于,試求該數(shù)列公比的取值范圍;

3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實數(shù)),設(shè)為數(shù)列的前項和.若已知數(shù)列極限存在,試求實數(shù)的取值范圍,并求出該極限值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求曲線與曲線交點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且,圓的方程是.

(1)求雙曲線的方程;

(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

(3)過圓上任意一點作圓的切線交雙曲線兩點, 中點為,

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù),).

(1)當(dāng)時,若曲線上存在兩點關(guān)于點成中心對稱,求直線的斜率;

(2)在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點,若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組有男女生各5名.以下莖葉圖記錄了該小組同學(xué)在一次數(shù)學(xué)測試中的成績(單位:分).已知男生數(shù)據(jù)的中位數(shù)為125,女生數(shù)據(jù)的平均數(shù)為126.8.

1)求的值;

2)現(xiàn)從成績高于125分的同學(xué)中隨機抽取兩名同學(xué),求抽取的兩名同學(xué)恰好為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意實數(shù)恒有,且當(dāng),,又.

1)判斷的奇偶性;

2)求在區(qū)間上的最大值;

3)是否存在實數(shù),使得不等式對一切都成立?若存在求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓上的一點,為橢圓的兩焦點,若,試求:

1)橢圓的方程;

2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= .

(1)求函數(shù)f(x)的定義域和值域;

(2)設(shè)F(x)=m+f(x),求函數(shù)F(x)的最大值的表達式g(m).

查看答案和解析>>

同步練習(xí)冊答案