(重慶卷文21)如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足:
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)d為點(diǎn)P到直線(xiàn)l: 的距離,若,求的值.
【解析】本小題主要考查雙曲線(xiàn)的第一定義、第二定義及轉(zhuǎn)化與化歸的數(shù)學(xué)思想,同時(shí)考查了學(xué)生的運(yùn)算能力。
【答案】(I)由雙曲線(xiàn)的定義,點(diǎn)P的軌跡是以M、N為焦點(diǎn),實(shí)軸長(zhǎng)2a=2的雙曲線(xiàn).
因此半焦距c=2,實(shí)半軸a=1,從而虛半軸b=,
所以雙曲線(xiàn)的方程為
(II)解法一:由(I)及答(21)圖,易知|PN|1,因|PM|=2|PN|2, ①
知|PM|>|PN|,故P為雙曲線(xiàn)右支上的點(diǎn),所以|PM|=|PN|+2. ②
將②代入①,得2||PN|2-|PN|-2=0,解得|PN|=,所以
|PN|=.
因?yàn)殡p曲線(xiàn)的離心率e==2,直線(xiàn)l:x=是雙曲線(xiàn)的右準(zhǔn)線(xiàn),故=e=2,
所以d=|PN|,因此
解法二:設(shè)P(x,y),因|PN|1知
|PM|=2|PN|22|PN|>|PN|,
故P在雙曲線(xiàn)右支上,所以x1.
由雙曲線(xiàn)方程有y2=3x2-3.
因此
從而由|PM|=2|PN|2得
2x+1=2(4x2-4x+1),即8x2-10x+1=0.
所以x=(舍去).
有|PM|=2x+1=
d=x-=.
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年重慶卷文)(12分)
如圖,傾斜角為的直線(xiàn)經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn)F,且與拋物線(xiàn)交于A、B兩點(diǎn)。
題(21)圖
(Ⅰ)求拋物線(xiàn)的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線(xiàn)l的方程;
(Ⅱ)若為銳角,作線(xiàn)段AB的垂直平分線(xiàn)m交x軸于點(diǎn)P,
證明|FP||FP|cos2為定值,并求此定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(重慶卷文21)如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足:
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)d為點(diǎn)P到直線(xiàn)l: 的距離,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年重慶卷文)(本小題滿(mǎn)分12分,(Ⅰ)小問(wèn)5分,(Ⅱ)小問(wèn)7分.)
如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足:
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)d為點(diǎn)P到直線(xiàn)l: 的距離,若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com