分析 (1)依題意,可求得a=1,b=-1,從而得Sn=n2,于是可求得a1及an=Sn-Sn-1=2n+1(n≥2),觀察即可求得數(shù)列{an}的通項公式;
(2)由(1)得bn=$\frac{2n-1}{{2}^{n}}$,利用錯位相減法可求得Tn=5-$\frac{2n+5}{{2}^{n}}$.
解答 解:(1)∵函數(shù)f(x)的圖象關(guān)于y軸對稱,
∴a-1=0且a+b=0,
解得a=1,b=-1,
∴f(x)=x2,
∴Sn=f(n+1)-1=(n+1)2-1=n2+2n
即有an=Sn-Sn-1=2n+1(n≥2),a1=S1=1也滿足,
∴an=2n+1;
(2)由(1)得bn=$\frac{2n+1}{{2}^{n}}$,
Tn=$\frac{3}{2}$+$\frac{5}{{2}^{2}}$+$\frac{7}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n-1}}$+$\frac{2n+1}{{2}^{n}}$,①
∴$\frac{1}{2}$Tn=$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+$\frac{7}{{2}^{4}}$+…+$\frac{2n-1}{{2}^{n}}$+$\frac{2n+1}{{2}^{n+1}}$,②
①-②得$\frac{1}{2}$Tn=$\frac{3}{2}$+$\frac{2}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{2}{{2}^{4}}$+…+$\frac{2}{{2}^{n}}$-$\frac{2n+1}{{2}^{n+1}}$
=$\frac{3}{2}$+2×$\frac{\frac{1}{2}[1-\frac{1}{{2}^{n-1}}]}{1-\frac{1}{2}}$-$\frac{2n+1}{{2}^{n+1}}$
=$\frac{3}{2}$+2-$\frac{1}{{2}^{n-1}}$-$\frac{2n+1}{{2}^{n+1}}$
=$\frac{7}{2}$-$\frac{2n+5}{{2}^{n+1}}$.
∴Tn=7-$\frac{2n+5}{{2}^{n}}$.
點評 本題考查數(shù)列通項公式與數(shù)列的求和,著重考查數(shù)列的錯位相減法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {$\frac{1}{2}$} | B. | {2} | C. | {1} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2-i | B. | 2+i | C. | 4-i | D. | 4+i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù)且它的圖象關(guān)于點(π,0)對稱 | |
B. | 奇函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱 | |
C. | 偶函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱 | |
D. | 偶函數(shù)且它的圖象關(guān)于點(π,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{7}{2}$ | C. | 4 | D. | $\frac{9}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com